Python tensorflow.python.layers.base.Layer() Examples
The following are 30
code examples of tensorflow.python.layers.base.Layer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.layers.base
, or try the search function
.
Example #1
Source File: topology.py From lambda-packs with MIT License | 6 votes |
def output_mask(self): """Retrieves the output mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Output mask tensor (potentially None) or list of output mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ if len(self.inbound_nodes) != 1: raise AttributeError('Layer ' + self.name + ' has multiple inbound nodes, ' 'hence the notion of "layer output mask" ' 'is ill-defined. ' 'Use `get_output_mask_at(node_index)` ' 'instead.') return self._get_node_attribute_at_index(0, 'output_masks', 'output mask')
Example #2
Source File: custom_decoder.py From tacotron2-mandarin-griffin-lim with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell(type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #3
Source File: custom_decoder.py From Tacotron-2 with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell(type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #4
Source File: basic_decoder.py From tf-var-attention with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None): """Initialize BasicDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access raise TypeError("cell must be an RNNCell, received: %s" % type(cell)) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer self._latent_vector = latent_vector
Example #5
Source File: rev_block_lib.py From tf-slim with Apache License 2.0 | 6 votes |
def call(self, inputs, forward=True): vs = variable_scope.get_variable_scope() vars_before = vs.global_variables() if forward: x1, x2 = inputs out = self._forward(x1, x2) else: y1, y2 = inputs out = self._backward(y1, y2) # Add any created variables to the Layer's variable stores new_vars = vs.global_variables()[len(vars_before):] train_vars = vs.trainable_variables() for new_var in new_vars: if new_var in train_vars: self._trainable_weights.append(new_var) else: self._non_trainable_weights.append(new_var) return out
Example #6
Source File: custom_decoder.py From vae_tacotron2 with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access raise TypeError("cell must be an RNNCell, received: %s" % type(cell)) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #7
Source File: topology.py From lambda-packs with MIT License | 6 votes |
def input_spec(self): """Gets the model's input specs. Returns: A list of `InputSpec` instances (one per input to the model) or a single instance if the model has only one input. """ specs = [] for layer in getattr(self, 'input_layers', []): if layer.input_spec is None: specs.append(None) else: if not isinstance(layer.input_spec, list): raise TypeError('Layer ' + layer.name + ' has an input_spec attribute that ' 'is not a list. We expect a list. ' 'Found input_spec = ' + str(layer.input_spec)) specs += layer.input_spec if len(specs) == 1: return specs[0] return specs
Example #8
Source File: custom_decoder.py From gmvae_tacotron with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access raise TypeError("cell must be an RNNCell, received: %s" % type(cell)) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #9
Source File: topology.py From lambda-packs with MIT License | 6 votes |
def input_mask(self): """Retrieves the input mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Input mask tensor (potentially None) or list of input mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ if len(self.inbound_nodes) != 1: raise AttributeError('Layer ' + self.name + ' has multiple inbound nodes, ' + 'hence the notion of "layer input mask" ' 'is ill-defined. ' 'Use `get_input_mask_at(node_index)` ' 'instead.') return self._get_node_attribute_at_index(0, 'input_masks', 'input mask')
Example #10
Source File: topology.py From lambda-packs with MIT License | 6 votes |
def input(self): """Retrieves the input tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Input tensor or list of input tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ if len(self.inbound_nodes) > 1: raise AttributeError('Layer ' + self.name + ' has multiple inbound nodes, ' 'hence the notion of "layer input" ' 'is ill-defined. ' 'Use `get_input_at(node_index)` instead.') elif not self.inbound_nodes: raise AttributeError('Layer ' + self.name + ' is not connected, no input to return.') return self._get_node_attribute_at_index(0, 'input_tensors', 'input')
Example #11
Source File: topology.py From lambda-packs with MIT License | 6 votes |
def compute_mask(self, inputs, mask=None): # pylint: disable=unused-argument """Computes an output mask tensor. Arguments: inputs: Tensor or list of tensors. mask: Tensor or list of tensors. Returns: None or a tensor (or list of tensors, one per output tensor of the layer). """ if not self.supports_masking: if mask is not None: if isinstance(mask, list): if any(m is not None for m in mask): raise TypeError('Layer ' + self.name + ' does not support masking, ' 'but was passed an input_mask: ' + str(mask)) else: raise TypeError('Layer ' + self.name + ' does not support masking, ' 'but was passed an input_mask: ' + str(mask)) # masking not explicitly supported: return None as mask return None # if masking is explicitly supported, by default # carry over the input mask return mask
Example #12
Source File: custom_decoder.py From style-token_tacotron2 with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ # rnn_cell_impl.assert_like_rnncell(type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #13
Source File: topology.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def compute_mask(self, inputs, mask=None): # pylint: disable=unused-argument """Computes an output mask tensor. Arguments: inputs: Tensor or list of tensors. mask: Tensor or list of tensors. Returns: None or a tensor (or list of tensors, one per output tensor of the layer). """ if not self.supports_masking: if mask is not None: if isinstance(mask, list): if any(m is not None for m in mask): raise TypeError('Layer ' + self.name + ' does not support masking, ' 'but was passed an input_mask: ' + str(mask)) else: raise TypeError('Layer ' + self.name + ' does not support masking, ' 'but was passed an input_mask: ' + str(mask)) # masking not explicitly supported: return None as mask return None # if masking is explicitly supported, by default # carry over the input mask return mask
Example #14
Source File: rev_block_lib.py From tensornets with MIT License | 6 votes |
def call(self, inputs, forward=True): vs = variable_scope.get_variable_scope() vars_before = vs.global_variables() if forward: x1, x2 = inputs out = self._forward(x1, x2) else: y1, y2 = inputs out = self._backward(y1, y2) # Add any created variables to the Layer's variable stores new_vars = vs.global_variables()[len(vars_before):] train_vars = vs.trainable_variables() for new_var in new_vars: if new_var in train_vars: self._trainable_weights.append(new_var) else: self._non_trainable_weights.append(new_var) return out
Example #15
Source File: custom_decoder.py From linguistic-style-transfer with Apache License 2.0 | 6 votes |
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None): """Initialize BasicDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. latent_vector: A hidden state intended to be concatenated with the hidden state at every time-step of decoding output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell("cell must be an RNNCell, received: %s" % type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if output_layer is not None and not isinstance(output_layer, layers_base.Layer): raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer self._latent_vector = latent_vector
Example #16
Source File: seq2seq_model.py From DeepAffinity with GNU General Public License v3.0 | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #17
Source File: seq2seq_model.py From DeepAffinity with GNU General Public License v3.0 | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #18
Source File: seq2seq_model.py From DeepAffinity with GNU General Public License v3.0 | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #19
Source File: seq2seq_model.py From DeepAffinity with GNU General Public License v3.0 | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #20
Source File: rnn_cell.py From Artificial-Neural-Network-THU-2018 with MIT License | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #21
Source File: rnn_cell_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #22
Source File: rnn_cell.py From Artificial-Neural-Network-THU-2018 with MIT License | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #23
Source File: rnn_cell.py From Artificial-Neural-Network-THU-2018 with MIT License | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #24
Source File: rnn_dropout.py From GtS with MIT License | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #25
Source File: topology.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __call__(self, inputs, **kwargs): """Wrapper around self.call(), for handling internal references. If a Keras tensor is passed: - We call self._add_inbound_node(). - If necessary, we `build` the layer to match the shape of the input(s). - We update the _keras_history of the output tensor(s) with the current layer. This is done as part of _add_inbound_node(). Arguments: inputs: Can be a tensor or list/tuple of tensors. **kwargs: Additional keyword arguments to be passed to `call()`. Returns: Output of the layer's `call` method. Raises: ValueError: in case the layer is missing shape information for its `build` call. """ # Actually call the layer (optionally building it). output = super(Layer, self).__call__(inputs, **kwargs) # Update learning phase info. output_tensors = _to_list(output) uses_lp = any( [getattr(x, '_uses_learning_phase', False) for x in _to_list(inputs)]) uses_lp = getattr(self, 'uses_learning_phase', False) or uses_lp for i in range(len(output_tensors)): output_tensors[i]._uses_learning_phase = getattr( output_tensors[i], '_uses_learning_phase', False) or uses_lp # Optionally load weight values that were specified at layer instantiation. if hasattr(self, '_initial_weights') and self._initial_weights is not None: self.set_weights(self._initial_weights) del self._initial_weights return output
Example #26
Source File: topology.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def set_weights(self, weights): """Sets the weights of the layer, from Numpy arrays. Arguments: weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of `get_weights`). Raises: ValueError: If the provided weights list does not match the layer's specifications. """ params = self.weights if len(params) != len(weights): raise ValueError('You called `set_weights(weights)` on layer "' + self.name + '" with a weight list of length ' + str(len(weights)) + ', but the layer was expecting ' + str(len(params)) + ' weights. Provided weights: ' + str(weights)[:50] + '...') if not params: return weight_value_tuples = [] param_values = K.batch_get_value(params) for pv, p, w in zip(param_values, params, weights): if pv.shape != w.shape: raise ValueError('Layer weight shape ' + str(pv.shape) + ' not compatible with ' 'provided weight shape ' + str(w.shape)) weight_value_tuples.append((p, w)) K.batch_set_value(weight_value_tuples)
Example #27
Source File: seq2seq_model.py From DeepAffinity with GNU General Public License v3.0 | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #28
Source File: rnn_cell_impl.py From lambda-packs with MIT License | 5 votes |
def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_variable() inside the call() method. pass
Example #29
Source File: topology.py From lambda-packs with MIT License | 5 votes |
def set_weights(self, weights): """Sets the weights of the layer, from Numpy arrays. Arguments: weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of `get_weights`). Raises: ValueError: If the provided weights list does not match the layer's specifications. """ params = self.weights if len(params) != len(weights): raise ValueError('You called `set_weights(weights)` on layer "' + self.name + '" with a weight list of length ' + str(len(weights)) + ', but the layer was expecting ' + str(len(params)) + ' weights. Provided weights: ' + str(weights)[:50] + '...') if not params: return weight_value_tuples = [] param_values = K.batch_get_value(params) for pv, p, w in zip(param_values, params, weights): if pv.shape != w.shape: raise ValueError('Layer weight shape ' + str(pv.shape) + ' not compatible with ' 'provided weight shape ' + str(w.shape)) weight_value_tuples.append((p, w)) K.batch_set_value(weight_value_tuples)
Example #30
Source File: basic_decoder.py From lambda-packs with MIT License | 5 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize BasicDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access raise TypeError("cell must be an RNNCell, received: %s" % type(cell)) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer