Python object_detection.core.box_list_ops.concatenate() Examples
The following are 30
code examples of object_detection.core.box_list_ops.concatenate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.box_list_ops
, or try the search function
.
Example #1
Source File: box_list_ops_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #2
Source File: box_list_ops_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #3
Source File: box_list_ops_test.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #4
Source File: box_list_ops_test.py From object_detector_app with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #5
Source File: box_list_ops_test.py From hands-detection with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #6
Source File: box_list_ops_test.py From MBMD with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #7
Source File: box_list_ops_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #8
Source File: box_list_ops_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #9
Source File: box_list_ops_test.py From moveo_ros with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #10
Source File: box_list_ops_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #11
Source File: box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #12
Source File: box_list_ops_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #13
Source File: box_list_ops_test.py From HereIsWally with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #14
Source File: box_list_ops_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #15
Source File: box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #16
Source File: box_list_ops_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #17
Source File: box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def test_concatenate_is_correct(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]], tf.float32) scores2 = tf.constant([1.0, 2.1, 5.6]) exp_corners = [[0, 0, 0, 0], [1, 2, 3, 4], [0, 3, 1, 6], [2, 4, 3, 8], [1, 0, 5, 10]] exp_scores = [1.0, 2.1, 1.0, 2.1, 5.6] boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) result = box_list_ops.concatenate([boxlist1, boxlist2]) with self.test_session() as sess: corners_output, scores_output = sess.run( [result.get(), result.get_field('scores')]) self.assertAllClose(corners_output, exp_corners) self.assertAllClose(scores_output, exp_scores)
Example #18
Source File: box_list_ops_test.py From moveo_ros with MIT License | 5 votes |
def test_concatenate_with_missing_fields(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #19
Source File: box_list_ops_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def test_invalid_input_box_list_list(self): with self.assertRaises(ValueError): box_list_ops.concatenate(None) with self.assertRaises(ValueError): box_list_ops.concatenate([]) with self.assertRaises(ValueError): corners = tf.constant([[0, 0, 0, 0]], tf.float32) boxlist = box_list.BoxList(corners) box_list_ops.concatenate([boxlist, 2])
Example #20
Source File: faster_rcnn_meta_arch.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _extract_rpn_feature_maps(self, preprocessed_inputs): """Extracts RPN features. This function extracts two feature maps: a feature map to be directly fed to a box predictor (to predict location and objectness scores for proposals) and a feature map from which to crop regions which will then be sent to the second stage box classifier. Args: preprocessed_inputs: a [batch, height, width, channels] image tensor. Returns: rpn_box_predictor_features: A 4-D float32 tensor with shape [batch, height, width, depth] to be used for predicting proposal boxes and corresponding objectness scores. rpn_features_to_crop: A 4-D float32 tensor with shape [batch, height, width, depth] representing image features to crop using the proposals boxes. anchors: A BoxList representing anchors (for the RPN) in absolute coordinates. image_shape: A 1-D tensor representing the input image shape. """ image_shape = tf.shape(preprocessed_inputs) rpn_features_to_crop, _ = self._feature_extractor.extract_proposal_features( preprocessed_inputs, scope=self.first_stage_feature_extractor_scope) feature_map_shape = tf.shape(rpn_features_to_crop) anchors = box_list_ops.concatenate( self._first_stage_anchor_generator.generate([(feature_map_shape[1], feature_map_shape[2])])) with slim.arg_scope(self._first_stage_box_predictor_arg_scope_fn()): kernel_size = self._first_stage_box_predictor_kernel_size rpn_box_predictor_features = slim.conv2d( rpn_features_to_crop, self._first_stage_box_predictor_depth, kernel_size=[kernel_size, kernel_size], rate=self._first_stage_atrous_rate, activation_fn=tf.nn.relu6) return (rpn_box_predictor_features, rpn_features_to_crop, anchors, image_shape)
Example #21
Source File: box_list_ops_test.py From MBMD with MIT License | 5 votes |
def test_invalid_input_box_list_list(self): with self.assertRaises(ValueError): box_list_ops.concatenate(None) with self.assertRaises(ValueError): box_list_ops.concatenate([]) with self.assertRaises(ValueError): corners = tf.constant([[0, 0, 0, 0]], tf.float32) boxlist = box_list.BoxList(corners) box_list_ops.concatenate([boxlist, 2])
Example #22
Source File: box_list_ops_test.py From MBMD with MIT License | 5 votes |
def test_concatenate_with_missing_fields(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #23
Source File: box_list_ops_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_concatenate_with_incompatible_field_shapes(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) scores2 = tf.constant([[1.0, 1.0], [2.1, 3.2]]) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #24
Source File: box_list_ops_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_concatenate_with_missing_fields(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #25
Source File: box_list_ops_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_invalid_input_box_list_list(self): with self.assertRaises(ValueError): box_list_ops.concatenate(None) with self.assertRaises(ValueError): box_list_ops.concatenate([]) with self.assertRaises(ValueError): corners = tf.constant([[0, 0, 0, 0]], tf.float32) boxlist = box_list.BoxList(corners) box_list_ops.concatenate([boxlist, 2])
Example #26
Source File: faster_rcnn_meta_arch.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _extract_rpn_feature_maps(self, preprocessed_inputs): """Extracts RPN features. This function extracts two feature maps: a feature map to be directly fed to a box predictor (to predict location and objectness scores for proposals) and a feature map from which to crop regions which will then be sent to the second stage box classifier. Args: preprocessed_inputs: a [batch, height, width, channels] image tensor. Returns: rpn_box_predictor_features: A 4-D float32 tensor with shape [batch, height, width, depth] to be used for predicting proposal boxes and corresponding objectness scores. rpn_features_to_crop: A 4-D float32 tensor with shape [batch, height, width, depth] representing image features to crop using the proposals boxes. anchors: A BoxList representing anchors (for the RPN) in absolute coordinates. image_shape: A 1-D tensor representing the input image shape. """ image_shape = tf.shape(preprocessed_inputs) rpn_features_to_crop, _ = self._feature_extractor.extract_proposal_features( preprocessed_inputs, scope=self.first_stage_feature_extractor_scope) feature_map_shape = tf.shape(rpn_features_to_crop) anchors = box_list_ops.concatenate( self._first_stage_anchor_generator.generate([(feature_map_shape[1], feature_map_shape[2])])) with slim.arg_scope(self._first_stage_box_predictor_arg_scope_fn()): kernel_size = self._first_stage_box_predictor_kernel_size rpn_box_predictor_features = slim.conv2d( rpn_features_to_crop, self._first_stage_box_predictor_depth, kernel_size=[kernel_size, kernel_size], rate=self._first_stage_atrous_rate, activation_fn=tf.nn.relu6) return (rpn_box_predictor_features, rpn_features_to_crop, anchors, image_shape)
Example #27
Source File: box_list_ops_test.py From MBMD with MIT License | 5 votes |
def test_concatenate_with_incompatible_field_shapes(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) scores2 = tf.constant([[1.0, 1.0], [2.1, 3.2]]) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #28
Source File: box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_concatenate_with_incompatible_field_shapes(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) scores2 = tf.constant([[1.0, 1.0], [2.1, 3.2]]) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #29
Source File: box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_concatenate_with_missing_fields(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])
Example #30
Source File: box_list_ops_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def test_concatenate_with_incompatible_field_shapes(self): corners1 = tf.constant([[0, 0, 0, 0], [1, 2, 3, 4]], tf.float32) scores1 = tf.constant([1.0, 2.1]) corners2 = tf.constant([[0, 3, 1, 6], [2, 4, 3, 8]], tf.float32) scores2 = tf.constant([[1.0, 1.0], [2.1, 3.2]]) boxlist1 = box_list.BoxList(corners1) boxlist1.add_field('scores', scores1) boxlist2 = box_list.BoxList(corners2) boxlist2.add_field('scores', scores2) with self.assertRaises(ValueError): box_list_ops.concatenate([boxlist1, boxlist2])