Python object_detection.core.box_list_ops.sq_dist() Examples
The following are 30
code examples of object_detection.core.box_list_ops.sq_dist().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.box_list_ops
, or try the search function
.
Example #1
Source File: region_similarity_calculator.py From AniSeg with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #2
Source File: region_similarity_calculator.py From hands-detection with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #3
Source File: box_list_ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #4
Source File: region_similarity_calculator.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #5
Source File: box_list_ops_test.py From MBMD with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #6
Source File: region_similarity_calculator.py From MBMD with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #7
Source File: box_list_ops_test.py From Elphas with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #8
Source File: region_similarity_calculator.py From Elphas with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #9
Source File: box_list_ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #10
Source File: region_similarity_calculator.py From object_detection_with_tensorflow with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #11
Source File: box_list_ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #12
Source File: region_similarity_calculator.py From object_detection_with_tensorflow with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #13
Source File: box_list_ops_test.py From monopsr with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #14
Source File: region_similarity_calculator.py From monopsr with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #15
Source File: box_list_ops_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #16
Source File: box_list_ops_test.py From hands-detection with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #17
Source File: box_list_ops_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #18
Source File: region_similarity_calculator.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #19
Source File: box_list_ops_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #20
Source File: region_similarity_calculator.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #21
Source File: box_list_ops_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #22
Source File: region_similarity_calculator.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #23
Source File: box_list_ops_test.py From models with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): def graph_fn(): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) return dist_matrix exp_output = [[26, 25, 0], [18, 27, 6]] dist_output = self.execute(graph_fn, []) self.assertAllClose(dist_output, exp_output)
Example #24
Source File: region_similarity_calculator.py From models with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #25
Source File: box_list_ops_test.py From motion-rcnn with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #26
Source File: region_similarity_calculator.py From motion-rcnn with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #27
Source File: box_list_ops_test.py From mtl-ssl with Apache License 2.0 | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #28
Source File: region_similarity_calculator.py From mtl-ssl with Apache License 2.0 | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
Example #29
Source File: box_list_ops_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_pairwise_distances(self): corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 2.0]]) corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) exp_output = [[26, 25, 0], [18, 27, 6]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) dist_matrix = box_list_ops.sq_dist(boxes1, boxes2) with self.test_session() as sess: dist_output = sess.run(dist_matrix) self.assertAllClose(dist_output, exp_output)
Example #30
Source File: region_similarity_calculator.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)