Python tensorflow.python.framework.graph_util_impl.convert_variables_to_constants() Examples

The following are 1 code examples of tensorflow.python.framework.graph_util_impl.convert_variables_to_constants(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.framework.graph_util_impl , or try the search function .
Example #1
Source File: punctuator.py    From keras-punctuator with MIT License 4 votes vote down vote up
def freeze():
    checkpoint_prefix = os.path.join(TMP_DIR, "saved_checkpoint")
    checkpoint_state_name = "checkpoint_state"
    input_graph_name = "input_graph.pb"
    output_graph_name = "freezed.pb"
    saver_write_version = 1

    # We'll create an input graph that has a single variable containing 1.0,
    # and that then multiplies it by 2.
    from tensorflow.python.framework import ops
    with ops.Graph().as_default():
        from keras import backend as K
        K.set_learning_phase(0)
        model = createModel()
        model.load_weights(KERAS_WEIGHTS_FILE)

        sess = K.get_session()
        from tensorflow.python.framework.graph_util_impl import convert_variables_to_constants
        # convert_variables_to_constants(sess, sess.graph.as_graph_def(), [model.output.name.split(':')[0]])
        testGraph(sess, '')

        from tensorflow.python.training import saver as saver_lib
        saver = saver_lib.Saver(write_version=saver_write_version)
        checkpoint_path = saver.save(
            sess,
            checkpoint_prefix,
            global_step=0,
            latest_filename=checkpoint_state_name)
        from tensorflow.python.framework import graph_io
        graph_io.write_graph(sess.graph, TMP_DIR, input_graph_name)
        sess.close()


    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(TMP_DIR, input_graph_name)
    input_saver_def_path = ""
    input_binary = False
    output_node_names = model.output.name.split(':')[0]
    restore_op_name = "save/restore_all"
    filename_tensor_name = "save/Const:0"
    output_graph_path = os.path.join(MODEL_DATA_DIR, output_graph_name)
    clear_devices = False

    from tensorflow.python.tools import freeze_graph
    freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
                              input_binary, checkpoint_path, output_node_names,
                              restore_op_name, filename_tensor_name,
                              output_graph_path, clear_devices, "")

    exportWordIndex(loadWordIndex())