Python torch.nn.LogSigmoid() Examples

The following are 11 code examples of torch.nn.LogSigmoid(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torch.nn , or try the search function .
Example #1
Source File: loss.py    From pycorrector with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 embed_size,
                 counter,
                 n_negatives,
                 power,
                 device,
                 ignore_index):
        super(NegativeSampling, self).__init__()

        self.counter = counter
        self.n_negatives = n_negatives
        self.power = power
        self.device = device

        self.W = nn.Embedding(num_embeddings=len(counter),
                              embedding_dim=embed_size,
                              padding_idx=ignore_index)
        self.W.weight.data.zero_()
        self.logsigmoid = nn.LogSigmoid()
        self.sampler = WalkerAlias(np.power(counter, power)) 
Example #2
Source File: loss.py    From ScenarioMeta with MIT License 5 votes vote down vote up
def __init__(self):
        nn.Module.__init__(self)
        self.m = nn.LogSigmoid() 
Example #3
Source File: Base_Network.py    From nn_builder with MIT License 5 votes vote down vote up
def create_str_to_activations_converter(self):
        """Creates a dictionary which converts strings to activations"""
        str_to_activations_converter = {"elu": nn.ELU(), "hardshrink": nn.Hardshrink(), "hardtanh": nn.Hardtanh(),
                                        "leakyrelu": nn.LeakyReLU(), "logsigmoid": nn.LogSigmoid(), "prelu": nn.PReLU(),
                                        "relu": nn.ReLU(), "relu6": nn.ReLU6(), "rrelu": nn.RReLU(), "selu": nn.SELU(),
                                        "sigmoid": nn.Sigmoid(), "softplus": nn.Softplus(), "logsoftmax": nn.LogSoftmax(),
                                        "softshrink": nn.Softshrink(), "softsign": nn.Softsign(), "tanh": nn.Tanh(),
                                        "tanhshrink": nn.Tanhshrink(), "softmin": nn.Softmin(), "softmax": nn.Softmax(dim=1),
                                         "none": None}
        return str_to_activations_converter 
Example #4
Source File: loss.py    From paragraph-vectors with MIT License 5 votes vote down vote up
def __init__(self):
        super(NegativeSampling, self).__init__()
        self._log_sigmoid = nn.LogSigmoid() 
Example #5
Source File: adv_masker.py    From bert_on_stilts with Apache License 2.0 5 votes vote down vote up
def __init__(self, vocab_size, original_hidden_size, num_layers, tau=1):
        super().__init__()
        self.bert_layer = BertLayer(BertConfig(
            vocab_size_or_config_json_file=vocab_size,
            hidden_size=original_hidden_size * num_layers,
        ))
        self.linear_layer = nn.Linear(original_hidden_size * num_layers, 1)
        self.log_sigmoid = nn.LogSigmoid()
        self.tau = tau 
Example #6
Source File: training.py    From peakonly with MIT License 5 votes vote down vote up
def __init__(self, weights=None):
        self.weights = weights
        self.logsigmoid = nn.LogSigmoid() 
Example #7
Source File: layers.py    From mead-baseline with Apache License 2.0 5 votes vote down vote up
def get_activation(name: str = "relu") -> nn.Module:
    """Get back an `nn.Module` by string name of the activation operator

    :param name: A string name of the operation
    :return: A module associated with that string
    """
    if name is None or name == "ident":
        return nn.Identity()
    if name == "tanh":
        return nn.Tanh()
    if name == "gelu":
        return GeLU()
    if name == "hardtanh":
        return nn.Hardtanh()
    if name == "leaky_relu":
        return nn.LeakyReLU()
    if name == "prelu":
        return nn.PReLU()
    if name == "sigmoid":
        return nn.Sigmoid()
    if name == "log_sigmoid":
        return nn.LogSigmoid()
    if name == "log_softmax":
        return nn.LogSoftmax(dim=-1)
    if name == "softmax":
        return nn.Softmax(dim=-1)
    return nn.ReLU() 
Example #8
Source File: model.py    From pytorch-SkipGram with Apache License 2.0 5 votes vote down vote up
def __init__(self, vocab_size, emb_dim):
        super(SkipGramNeg, self).__init__()
        self.input_emb = nn.Embedding(vocab_size, emb_dim)
        self.output_emb = nn.Embedding(vocab_size, emb_dim)
        self.log_sigmoid = nn.LogSigmoid()

        initrange = (2.0 / (vocab_size + emb_dim)) ** 0.5  # Xavier init
        self.input_emb.weight.data.uniform_(-initrange, initrange)
        self.output_emb.weight.data.uniform_(-0, 0) 
Example #9
Source File: activation.py    From claf with MIT License 5 votes vote down vote up
def get_activation_fn(name):
    """ PyTorch built-in activation functions """

    activation_functions = {
        "linear": lambda: lambda x: x,
        "relu": nn.ReLU,
        "relu6": nn.ReLU6,
        "elu": nn.ELU,
        "prelu": nn.PReLU,
        "leaky_relu": nn.LeakyReLU,
        "threshold": nn.Threshold,
        "hardtanh": nn.Hardtanh,
        "sigmoid": nn.Sigmoid,
        "tanh": nn.Tanh,
        "log_sigmoid": nn.LogSigmoid,
        "softplus": nn.Softplus,
        "softshrink": nn.Softshrink,
        "softsign": nn.Softsign,
        "tanhshrink": nn.Tanhshrink,
    }

    if name not in activation_functions:
        raise ValueError(
            f"'{name}' is not included in activation_functions. use below one. \n {activation_functions.keys()}"
        )

    return activation_functions[name] 
Example #10
Source File: log_sigmoid.py    From onnx2keras with MIT License 5 votes vote down vote up
def __init__(self):
        super(LayerLogSigmoidTest, self).__init__()
        self.sig = nn.LogSigmoid() 
Example #11
Source File: flow.py    From variational-autoencoder with MIT License 5 votes vote down vote up
def __init__(self, num_input, num_hidden, num_context):
    super().__init__()
    self.made = MADE(num_input=num_input, num_output=num_input * 2,
                     num_hidden=num_hidden, num_context=num_context)
    # init such that sigmoid(s) is close to 1 for stability
    self.sigmoid_arg_bias = nn.Parameter(torch.ones(num_input) * 2)
    self.sigmoid = nn.Sigmoid()
    self.log_sigmoid = nn.LogSigmoid()