Python torch.nn.TripletMarginLoss() Examples
The following are 5
code examples of torch.nn.TripletMarginLoss().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn
, or try the search function
.
Example #1
Source File: base_agent.py From 2D-Motion-Retargeting with MIT License | 7 votes |
def __init__(self, config, net): self.log_dir = config.log_dir self.model_dir = config.model_dir self.net = net self.clock = TrainClock() self.device = config.device self.use_triplet = config.use_triplet self.use_footvel_loss = config.use_footvel_loss # set loss function self.mse = nn.MSELoss() self.tripletloss = nn.TripletMarginLoss(margin=config.triplet_margin) self.triplet_weight = config.triplet_weight self.foot_idx = config.foot_idx self.footvel_loss_weight = config.footvel_loss_weight # set optimizer self.optimizer = optim.Adam(self.net.parameters(), config.lr) self.scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, 0.99)
Example #2
Source File: __init__.py From Deep-Expander-Networks with GNU General Public License v3.0 | 6 votes |
def setup(model, opt): if opt.criterion == "l1": criterion = nn.L1Loss().cuda() elif opt.criterion == "mse": criterion = nn.MSELoss().cuda() elif opt.criterion == "crossentropy": criterion = nn.CrossEntropyLoss().cuda() elif opt.criterion == "hingeEmbedding": criterion = nn.HingeEmbeddingLoss().cuda() elif opt.criterion == "tripletmargin": criterion = nn.TripletMarginLoss(margin = opt.margin, swap = opt.anchorswap).cuda() parameters = filter(lambda p: p.requires_grad, model.parameters()) if opt.optimType == 'sgd': optimizer = optim.SGD(parameters, lr = opt.lr, momentum = opt.momentum, nesterov = opt.nesterov, weight_decay = opt.weightDecay) elif opt.optimType == 'adam': optimizer = optim.Adam(parameters, lr = opt.maxlr, weight_decay = opt.weightDecay) if opt.weight_init: utils.weights_init(model, opt) return model, criterion, optimizer
Example #3
Source File: utils.py From mmfashion with Apache License 2.0 | 5 votes |
def build_criterion(loss_dict): if loss_dict.type == 'CrossEntropyLoss': weight = loss_dict.weight size_average = loss_dict.size_average reduce = loss_dict.reduce reduction = loss_dict.reduction if loss_dict.use_sigmoid: return nn.BCEWithLogitsLoss( weight=weight, size_average=size_average, reduce=reduce, reduction=reduction) else: return nn.CrossEntropyLoss( weight=weight, size_average=size_average, reduce=reduce, reduction=reduction) elif loss_dict.type == 'TripletLoss': return nn.TripletMarginLoss(margin=loss_dict.margin, p=loss_dict.p) else: raise TypeError('{} cannot be processed'.format(loss_dict.type))
Example #4
Source File: loss.py From triplet-reid-pytorch with Apache License 2.0 | 5 votes |
def __init__(self, margin = None): super(TripletLoss, self).__init__() self.margin = margin if self.margin is None: # use soft-margin self.Loss = nn.SoftMarginLoss() else: self.Loss = nn.TripletMarginLoss(margin = margin, p = 2)
Example #5
Source File: triplet_loss.py From pytorch-loss with MIT License | 5 votes |
def __init__(self, margin=None): super(TripletLoss, self).__init__() self.margin = margin if self.margin is None: # if no margin assigned, use soft-margin self.Loss = nn.SoftMarginLoss() else: self.Loss = nn.TripletMarginLoss(margin=margin, p=2)