Python sklearn.utils.deprecated() Examples
The following are 13
code examples of sklearn.utils.deprecated().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.utils
, or try the search function
.
Example #1
Source File: base.py From pyod with BSD 2-Clause "Simplified" License | 5 votes |
def fit_predict(self, X, y=None): """Fit detector first and then predict whether a particular sample is an outlier or not. y is ignored in unsupervised models. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- outlier_labels : numpy array of shape (n_samples,) For each observation, tells whether or not it should be considered as an outlier according to the fitted model. 0 stands for inliers and 1 for outliers. .. deprecated:: 0.6.9 `fit_predict` will be removed in pyod 0.8.0.; it will be replaced by calling `fit` function first and then accessing `labels_` attribute for consistency. """ self.fit(X, y) return self.labels_
Example #2
Source File: base.py From pyod with BSD 2-Clause "Simplified" License | 5 votes |
def get_params(self, deep=True): """Get parameters for this estimator. See http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html and sklearn/base.py for more information. Parameters ---------- deep : bool, optional (default=True) If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out
Example #3
Source File: testing.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. .. deprecated:: 0.20 Will be removed in version 0.22 Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column')
Example #4
Source File: test_estimator_checks.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_check_fit_score_takes_y_works_on_deprecated_fit(): # Tests that check_fit_score_takes_y works on a class with # a deprecated fit method class TestEstimatorWithDeprecatedFitMethod(BaseEstimator): @deprecated("Deprecated for the purpose of testing " "check_fit_score_takes_y") def fit(self, X, y): return self check_fit_score_takes_y("test", TestEstimatorWithDeprecatedFitMethod())
Example #5
Source File: test_validation.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_check_array_warn_on_dtype_deprecation(): X = np.asarray([[0.0], [1.0]]) Y = np.asarray([[2.0], [3.0]]) with pytest.warns(DeprecationWarning, match="'warn_on_dtype' is deprecated"): check_array(X, warn_on_dtype=True) with pytest.warns(DeprecationWarning, match="'warn_on_dtype' is deprecated"): check_X_y(X, Y, warn_on_dtype=True)
Example #6
Source File: test_validation.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_has_fit_parameter(): assert not has_fit_parameter(KNeighborsClassifier, "sample_weight") assert has_fit_parameter(RandomForestRegressor, "sample_weight") assert has_fit_parameter(SVR, "sample_weight") assert has_fit_parameter(SVR(), "sample_weight") class TestClassWithDeprecatedFitMethod: @deprecated("Deprecated for the purpose of testing has_fit_parameter") def fit(self, X, y, sample_weight=None): pass assert has_fit_parameter(TestClassWithDeprecatedFitMethod, "sample_weight"), \ "has_fit_parameter fails for class with deprecated fit method."
Example #7
Source File: test_utils.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from https://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert issubclass(w[0].category, DeprecationWarning) assert "deprecated" in str(w[0].message).lower() # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham: SPAM = 1 ham = Ham() assert hasattr(ham, "SPAM") assert_equal(len(w), 1) assert issubclass(w[0].category, DeprecationWarning) assert "deprecated" in str(w[0].message).lower()
Example #8
Source File: svm.py From tslearn with BSD 2-Clause "Simplified" License | 5 votes |
def support_vectors_time_series_(self, X=None): warnings.warn('The use of ' '`support_vectors_time_series_` is deprecated in ' 'tslearn v0.4 and will be removed in v0.6. Use ' '`support_vectors_` property instead.') check_is_fitted(self, '_X_fit') return self._X_fit[self.svm_estimator_.support_]
Example #9
Source File: svm.py From tslearn with BSD 2-Clause "Simplified" License | 5 votes |
def support_vectors_time_series_(self, X=None): warnings.warn('The use of ' '`support_vectors_time_series_` is deprecated in ' 'tslearn v0.4 and will be removed in v0.6. Use ' '`support_vectors_` property instead.') check_is_fitted(self, '_X_fit') return self._X_fit[self.svm_estimator_.support_]
Example #10
Source File: test_utils.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower())
Example #11
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b
Example #12
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_clone_copy_init_params(): # test for deprecation warning when copying or casting an init parameter est = ModifyInitParams() message = ("Estimator ModifyInitParams modifies parameters in __init__. " "This behavior is deprecated as of 0.18 and support " "for this behavior will be removed in 0.20.") assert_warns_message(DeprecationWarning, message, clone, est)
Example #13
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False))