Python rasterio.uint8() Examples
The following are 10
code examples of rasterio.uint8().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
rasterio
, or try the search function
.
Example #1
Source File: conftest.py From earthpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def basic_image_tif(tmpdir, basic_image): """ A GeoTIFF representation of the basic_image array. Borrowed from rasterio/tests/conftest.py Returns ------- string path to raster file """ outfilename = str(tmpdir.join("basic_image.tif")) kwargs = { "crs": rio.crs.CRS({"init": "epsg:4326"}), "transform": Affine.identity(), "count": 1, "dtype": rio.uint8, "driver": "GTiff", "width": basic_image.shape[1], "height": basic_image.shape[0], "nodata": None, } with rio.open(outfilename, "w", **kwargs) as out: out.write(basic_image, indexes=1) return outfilename
Example #2
Source File: conftest.py From earthpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def basic_image_tif_2(tmpdir, basic_image_2): """ A GeoTIFF representation of the basic_image_2 array. Borrowed from rasterio/tests/conftest.py Returns ------- string path to raster file """ outfilename = str(tmpdir.join("basic_image_2.tif")) kwargs = { "crs": rio.crs.CRS({"init": "epsg:4326"}), "transform": Affine.identity(), "count": 1, "dtype": rio.uint8, "driver": "GTiff", "width": basic_image_2.shape[1], "height": basic_image_2.shape[0], "nodata": None, } with rio.open(outfilename, "w", **kwargs) as out: out.write(basic_image_2, indexes=1) return outfilename
Example #3
Source File: conftest.py From earthpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def basic_image_tif_CRS(tmpdir, basic_image): """ A GeoTIFF representation of the basic_image array with a different CRS. Borrowed from rasterio/tests/conftest.py Returns ------- string path to raster file """ outfilename = str(tmpdir.join("basic_image_CRS.tif")) kwargs = { "crs": rio.crs.CRS({"init": "epsg:3857"}), "transform": Affine.identity(), "count": 1, "dtype": rio.uint8, "driver": "GTiff", "width": basic_image.shape[1], "height": basic_image.shape[0], "nodata": None, } with rio.open(outfilename, "w", **kwargs) as out: out.write(basic_image, indexes=1) return outfilename
Example #4
Source File: io_util.py From WaterNet with MIT License | 5 votes |
def save_bitmap(file_path, image, source): """Save a bitmap given as a 2D matrix as a GeoTIFF.""" print("Save result at {}.".format(file_path)) with rasterio.open( file_path, 'w', driver='GTiff', dtype=rasterio.uint8, count=1, width=source.width, height=source.height, transform=source.transform) as dst: dst.write(image, indexes=1)
Example #5
Source File: conftest.py From earthpy with BSD 3-Clause "New" or "Revised" License | 5 votes |
def basic_image(): """ A 10x10 array with a square (3x3) feature Equivalent to results of rasterizing basic_geometry with all_touched=True. Borrowed from rasterio/tests/conftest.py Returns ------- numpy ndarray """ image = np.zeros((10, 10), dtype=np.uint8) image[2:5, 2:5] = 1 return image
Example #6
Source File: conftest.py From earthpy with BSD 3-Clause "New" or "Revised" License | 5 votes |
def basic_image_2(): """ A 10x10 array with a square (3x3) feature Equivalent to results of rasterizing basic_geometry with all_touched=True. Borrowed from rasterio/tests/conftest.py Returns ------- numpy ndarray """ image = np.zeros((20, 20), dtype=np.uint8) image[2:5, 2:5] = 1 return image
Example #7
Source File: utils.py From label-maker with MIT License | 5 votes |
def download_tile_tms(tile, imagery, folder, kwargs): """Download a satellite image tile from a tms endpoint""" image_format = get_image_format(imagery, kwargs) if os.environ.get('ACCESS_TOKEN'): token = os.environ.get('ACCESS_TOKEN') imagery = imagery.format_map(SafeDict(ACCESS_TOKEN=token)) r = requests.get(url(tile.split('-'), imagery), auth=kwargs.get('http_auth')) tile_img = op.join(folder, '{}{}'.format(tile, image_format)) tile = tile.split('-') over_zoom = kwargs.get('over_zoom') if over_zoom: new_zoom = over_zoom + kwargs.get('zoom') # get children child_tiles = children(int(tile[0]), int(tile[1]), int(tile[2]), zoom=new_zoom) child_tiles.sort() new_dim = 256 * (2 * over_zoom) w_lst = [] for i in range (2 * over_zoom): for j in range(2 * over_zoom): window = Window(i * 256, j * 256, 256, 256) w_lst.append(window) # request children with rasterio.open(tile_img, 'w', driver='jpeg', height=new_dim, width=new_dim, count=3, dtype=rasterio.uint8) as w: for num, t in enumerate(child_tiles): t = [str(t[0]), str(t[1]), str(t[2])] r = requests.get(url(t, imagery), auth=kwargs.get('http_auth')) img = np.array(Image.open(io.BytesIO(r.content)), dtype=np.uint8) try: img = img.reshape((256, 256, 3)) # 4 channels returned from some endpoints, but not all except ValueError: img = img.reshape((256, 256, 4)) img = img[:, :, :3] img = np.rollaxis(img, 2, 0) w.write(img, window=w_lst[num]) else: r = requests.get(url(tile, imagery), auth=kwargs.get('http_auth')) with open(tile_img, 'wb')as w: w.write(r.content) return tile_img
Example #8
Source File: rastertoolz.py From spandex with BSD 3-Clause "New" or "Revised" License | 5 votes |
def to_geotiff(array, src, path_to_tif): kwargs = src.meta kwargs.update( dtype=rasterio.uint8, count=1, compress='lzw') with rasterio.open(path_to_tif, 'w', **kwargs) as dst: dst.write_band(1, array.astype(rasterio.uint8)) # Modified version of rasterstats function of same name. Added functionality to # return the np array image of each geometry and apply arbitrary function instead # of precanned set. See notebook in the spandex examples dir for example usage.
Example #9
Source File: statistics_rasterInpolygon.py From python-urbanPlanning with MIT License | 5 votes |
def reprojectedRaster(rasterFn,ref_vectorFn,dst_raster_projected): dst_crs=gpd.read_file(ref_vectorFn).crs print(dst_crs) #{'init': 'epsg:4326'} a_T = datetime.datetime.now() # dst_crs='EPSG:4326' with rasterio.open(rasterFn) as src: transform, width, height = calculate_default_transform(src.crs, dst_crs, src.width, src.height, *src.bounds) kwargs = src.meta.copy() kwargs.update({ 'crs': dst_crs, 'transform': transform, 'width': width, 'height': height, # 'compress': "LZW", 'dtype':rasterio.uint8, #rasterio.float32 }) # print(src.count) with rasterio.open(dst_raster_projected, 'w', **kwargs) as dst: for i in range(1, src.count + 1): reproject( source=rasterio.band(src, i), destination=rasterio.band(dst, i), src_transform=src.transform, src_crs=src.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest ) b_T = datetime.datetime.now() print("reprojected time span:", b_T-a_T) #根据Polgyon统计raster栅格信息
Example #10
Source File: sentinel2_processing.py From NGVEO with MIT License | 4 votes |
def cloud_detection(self, input_file): print("cloud_detection", input_file) input_dir = os.path.join(input_file, "GRANULE") sub_directories = utils.get_immediate_subdirectories(input_dir) image_dir = os.path.join(input_dir, sub_directories[0], "IMG_DATA") input_bands = ['B01', 'B02', 'B04', 'B05', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12'] # Band order is strict # num_bands = len(input_bands) scale_factor = 10000.0 #Read from metadata ? band_paths = self.get_band_paths(input_file, input_bands) for band_ind, img_filename in enumerate(band_paths): with rasterio.open(img_filename) as ds: img = ds.read() if band_ind == 0: # First band need to be 60m tmparr = np.empty_like(img) aff60 = ds.transform img_stack = np.zeros((img.shape[0], img.shape[1], img.shape[2], len(input_bands))) img_stack[:, :, :, band_ind] = img / scale_factor elif input_bands[band_ind].upper() == "B09" or input_bands[band_ind].upper() == "B10": # 60m img_stack[:, :, :, band_ind] = img / scale_factor else: reproject(img, tmparr, src_transform=ds.transform, dst_transform=aff60, src_crs=ds.crs, dst_crs=ds.crs, resampling=Resampling.bilinear) img_stack[:, :, :, band_ind] = tmparr / scale_factor if input_bands[band_ind].upper() == "B02": # 10m aff10 = ds.transform nrows10 = img.shape[1] ncols10 = img.shape[2] ds10 = ds cloud_detector = S2PixelCloudDetector(threshold=0.4, average_over=4, dilation_size=2) cloud_probs = cloud_detector.get_cloud_probability_maps(img_stack) cloud_mask = cloud_detector.get_cloud_masks(img_stack).astype(rasterio.uint8) cloud_probs_10 = np.zeros((1, nrows10, ncols10)) reproject(cloud_probs, cloud_probs_10, src_transform=aff60, dst_transform=aff10, src_crs=ds.crs, dst_crs=ds.crs, resampling=Resampling.cubic_spline) cloud_mask_10 = np.zeros((1, nrows10, ncols10)) reproject(cloud_mask, cloud_mask_10, src_transform=aff60, dst_transform=aff10, src_crs=ds.crs, dst_crs=ds.crs, resampling=Resampling.nearest) return (cloud_probs_10, cloud_mask_10, ds10)