Python torchvision.models.inception_v3() Examples
The following are 30
code examples of torchvision.models.inception_v3().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: model.py From AttnGAN with MIT License | 6 votes |
def __init__(self, nef): super(CNN_ENCODER, self).__init__() if cfg.TRAIN.FLAG: self.nef = nef else: self.nef = 256 # define a uniform ranker model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' model.load_state_dict(model_zoo.load_url(url)) for param in model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(model) self.define_module(model) self.init_trainable_weights()
Example #2
Source File: model.py From semantic-object-accuracy-for-generative-text-to-image-synthesis with MIT License | 6 votes |
def __init__(self, nef): super(CNN_ENCODER, self).__init__() if cfg.TRAIN.FLAG: self.nef = nef else: self.nef = 256 # define a uniform ranker model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' model.load_state_dict(model_zoo.load_url(url)) for param in model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(model) self.define_module(model) self.init_trainable_weights()
Example #3
Source File: main.py From Grad-CAM.pytorch with Apache License 2.0 | 6 votes |
def get_net(net_name, weight_path=None): """ 根据网络名称获取模型 :param net_name: 网络名称 :param weight_path: 与训练权重路径 :return: """ pretrain = weight_path is None # 没有指定权重路径,则加载默认的预训练权重 if net_name in ['vgg', 'vgg16']: net = models.vgg16(pretrained=pretrain) elif net_name == 'vgg19': net = models.vgg19(pretrained=pretrain) elif net_name in ['resnet', 'resnet50']: net = models.resnet50(pretrained=pretrain) elif net_name == 'resnet101': net = models.resnet101(pretrained=pretrain) elif net_name in ['densenet', 'densenet121']: net = models.densenet121(pretrained=pretrain) elif net_name in ['inception']: net = models.inception_v3(pretrained=pretrain) elif net_name in ['mobilenet_v2']: net = models.mobilenet_v2(pretrained=pretrain) elif net_name in ['shufflenet_v2']: net = models.shufflenet_v2_x1_0(pretrained=pretrain) else: raise ValueError('invalid network name:{}'.format(net_name)) # 加载指定路径的权重参数 if weight_path is not None and net_name.startswith('densenet'): pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = torch.load(weight_path) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] net.load_state_dict(state_dict) elif weight_path is not None: net.load_state_dict(torch.load(weight_path)) return net
Example #4
Source File: model.py From torch-light with MIT License | 6 votes |
def __init__(self, vocab_size, dec_hsz, rnn_layers, bsz, max_len, dropout, use_cuda): super().__init__() self.torch = torch.cuda if use_cuda else torch self.dec_hsz = dec_hsz self.rnn_layers = rnn_layers self.bsz = bsz self.max_len = max_len self.vocab_size = vocab_size self.dropout = dropout self.enc = inception_v3(True) self.enc_out = nn.Linear(1000, dec_hsz) self.lookup_table = nn.Embedding(vocab_size, dec_hsz, padding_idx=PAD) self.rnn = nn.LSTM(dec_hsz + dec_hsz, dec_hsz, rnn_layers, batch_first=True, dropout=dropout) self.attn = Attention(dec_hsz) self.out = nn.Linear(self.dec_hsz, vocab_size) self._reset_parameters()
Example #5
Source File: model.py From attn-gan with MIT License | 6 votes |
def __init__(self, nef): super(CNN_ENCODER, self).__init__() if cfg.TRAIN.FLAG: self.nef = nef else: self.nef = 256 # define a uniform ranker model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' model.load_state_dict(model_zoo.load_url(url)) for param in model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(model) self.define_module(model) self.init_trainable_weights()
Example #6
Source File: utils.py From SMIT with MIT License | 6 votes |
def load_inception(path='data/RafD/normal/inception_v3.pth'): from torchvision.models import inception_v3 import torch import torch.nn as nn state_dict = torch.load(path) net = inception_v3(pretrained=False, transform_input=True) print("Loading inception_v3 from " + path) net.aux_logits = False num_ftrs = net.fc.in_features net.fc = nn.Linear(num_ftrs, state_dict['fc.weight'].size(0)) net.load_state_dict(state_dict) for param in net.parameters(): param.requires_grad = False return net # ==================================================================# # ==================================================================#
Example #7
Source File: strike_utils.py From strike-with-a-pose with GNU General Public License v3.0 | 6 votes |
def __init__(self, device): super(Model, self).__init__() self.device = device self.net = models.inception_v3(pretrained=True) self.net.eval() for param in self.net.parameters(): param.requires_grad = False # Set up preprocessor. self.preprocess = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) (self.width, self.height) = (299, 299)
Example #8
Source File: model.py From multiple-objects-gan with MIT License | 6 votes |
def __init__(self, nef): super(CNN_ENCODER, self).__init__() if cfg.TRAIN.FLAG: self.nef = nef else: self.nef = 256 # define a uniform ranker model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' model.load_state_dict(model_zoo.load_url(url)) for param in model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(model) self.define_module(model) self.init_trainable_weights()
Example #9
Source File: image_classifier.py From strike-with-a-pose with GNU General Public License v3.0 | 6 votes |
def __init__(self, true_class): super(ImageClassifier, self).__init__() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.net = models.inception_v3(pretrained=True).to(self.device) self.net.eval() for param in self.net.parameters(): param.requires_grad = False self.preprocess = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) self.label_map = self.load_imagenet_label_map() self.true_class = true_class self.true_label = self.label_map[self.true_class]
Example #10
Source File: test_attack_MotionBlurAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_inception_v3(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.inception_v3(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #11
Source File: test_attack_BlendedUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_inception_v3(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.inception_v3(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #12
Source File: test_attack_SaltAndPepperNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_inception_v3(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.inception_v3(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #13
Source File: test_attack_AdditiveUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_inception_v3(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.inception_v3(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #14
Source File: test_attack_Gaussian_blur.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_inception_v3(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.inception_v3(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #15
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def get_image_format(framework_name, model_name): """Return the correct input range and shape for target framework and model""" special_shape = {'pytorch':{'inception_v3': (299, 299)}, 'keras': {'xception': (299, 299), 'inception_v3':(299, 299), 'yolo_v3': (416, 416), 'ssd300': (300, 300)}} special_bound = {'keras':{'vgg16':(0, 255), 'vgg19':(0, 255), 'resnet50':(0, 255), 'ssd300': (0, 255)}, 'cloud': {'aip_antiporn': (0, 255), 'google_safesearch': (0, 255), 'google_objectdetection': (0, 255)}} default_shape = (224, 224) default_bound = (0, 1) if special_shape.get(framework_name, None): if special_shape[framework_name].get(model_name, None): default_shape = special_shape[framework_name][model_name] if special_bound.get(framework_name, None): if special_bound[framework_name].get(model_name, None): default_bound = special_bound[framework_name][model_name] return {'shape': default_shape, 'bounds': default_bound}
Example #16
Source File: model.py From DM-GAN with MIT License | 6 votes |
def __init__(self, nef): super(CNN_ENCODER, self).__init__() if cfg.TRAIN.FLAG: self.nef = nef else: self.nef = 256 # define a uniform ranker model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' model.load_state_dict(model_zoo.load_url(url)) for param in model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(model) self.define_module(model) self.init_trainable_weights()
Example #17
Source File: model.py From AttnGAN with MIT License | 6 votes |
def __init__(self, nef): super(CNN_ENCODER, self).__init__() if cfg.TRAIN.FLAG: self.nef = nef else: self.nef = 256 # define a uniform ranker model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' model.load_state_dict(model_zoo.load_url(url)) for param in model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(model) self.define_module(model) self.init_trainable_weights()
Example #18
Source File: class_activation_mapper.py From strike-with-a-pose with GNU General Public License v3.0 | 5 votes |
def __init__(self, true_class): super(ClassActivationMapper, self).__init__() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.net = models.inception_v3(pretrained=True).to(self.device) self.net.eval() for param in self.net.parameters(): param.requires_grad = False self.preprocess = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) self.label_map = self.load_imagenet_label_map() self.true_class = true_class self.true_label = self.label_map[self.true_class] feature_params = list(self.net.parameters())[-2] self.weight_softmax = np.squeeze(feature_params.data.detach().cpu().numpy()) # Get features from Mixed_7c layer. self.features = torch.zeros((1, 2048, 8, 8)) def copy_data(module, input, output): self.features.data.copy_(output.data) self.net._modules.get("Mixed_7c").register_forward_hook(copy_data) (bn, feat_nc, feat_h, feat_w) = self.features.shape self.feat_shape = (feat_nc, feat_h * feat_w) self.cam_shape = (feat_h, feat_w) self.out_shape = (299, 299)
Example #19
Source File: test_torchvision_models.py From pytorch-cnn-finetune with MIT License | 5 votes |
def test_inception_v3_model(input_var): original_model = torchvision_models.inception_v3( pretrained=True, transform_input=False, ) finetune_model = make_model( 'inception_v3', num_classes=1000, pool=default, pretrained=True ) copy_module_weights(original_model.fc, finetune_model._classifier) assert_equal_model_outputs(input_var, original_model, finetune_model)
Example #20
Source File: test_torchvision_models.py From pytorch-cnn-finetune with MIT License | 5 votes |
def test_inception_v3_model_with_another_input_size(input_var): model = make_model('inception_v3', num_classes=1000, pretrained=True) model(input_var)
Example #21
Source File: model.py From StackGAN-v2 with MIT License | 5 votes |
def __init__(self): super(INCEPTION_V3, self).__init__() self.model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' # print(next(model.parameters()).data) state_dict = \ model_zoo.load_url(url, map_location=lambda storage, loc: storage) self.model.load_state_dict(state_dict) for param in self.model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(next(self.model.parameters()).data) # print(self.model)
Example #22
Source File: fid.py From sagan-pytorch with Apache License 2.0 | 5 votes |
def load_patched_inception_v3(): inception = inception_v3(pretrained=True) inception.eval() inception.forward = forward.__get__(inception, Inception3) return inception.to(device)
Example #23
Source File: basenet.py From MCD_DA with MIT License | 5 votes |
def __init__(self): super(InceptionBase, self).__init__() model_ft = models.inception_v3(pretrained=True) #mod = list(model_ft.children()) #mod.pop() self.features = model_ft#nn.Sequential(*mod)
Example #24
Source File: model.py From Recipe2ImageGAN with MIT License | 5 votes |
def __init__(self): super(INCEPTION_V3, self).__init__() self.model = models.inception_v3() url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth' # print(next(model.parameters()).data) state_dict = \ model_zoo.load_url(url, map_location=lambda storage, loc: storage) self.model.load_state_dict(state_dict) for param in self.model.parameters(): param.requires_grad = False print('Load pretrained model from ', url) # print(next(self.model.parameters()).data) # print(self.model)
Example #25
Source File: fid.py From DeepPrivacy with MIT License | 5 votes |
def __init__(self, transform_input=True): super().__init__() self.inception_network = inception_v3(pretrained=False, transform_input=False) # Load state dict state_dict = torch.utils.model_zoo.load_url("https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth", model_dir="metrics/inception") self.inception_network.load_state_dict(state_dict) self.inception_network.Mixed_7c.register_forward_hook(self.output_hook) self.transform_input = transform_input
Example #26
Source File: eval_inception.py From RobGAN with MIT License | 5 votes |
def load_inception(): inception_model = inception_v3(pretrained=True, transform_input=False) inception_model.cuda() inception_model = torch.nn.DataParallel(inception_model, \ device_ids=range(opt.ngpu)) inception_model.eval() return inception_model
Example #27
Source File: test_backprop.py From flashtorch with MIT License | 5 votes |
def test_checks_input_size_for_inception_model(mocker): with pytest.raises(ValueError) as error: model = models.inception_v3() backprop = Backprop(model) target_class = 5 input_ = torch.zeros([1, 3, 224, 224]) backprop.calculate_gradients(input_, target_class) assert 'Image must be 299x299 for Inception models.' in str(error.value)
Example #28
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def load_pytorch_model(model_name): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() return _model
Example #29
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def _load_pytorch_model(model_name, summary): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() import torch if torch.cuda.is_available(): _model = _model.cuda() from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel import numpy as np mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) pmodel = ClsPyTorchModel( _model, bounds=( 0, 1), num_classes=1000, preprocessing=( mean, std)) return pmodel
Example #30
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def _load_keras_model(model_name, summary): import keras.applications as models switcher = { 'xception': lambda: models.xception.Xception(weights='imagenet'), 'vgg16': lambda: models.vgg16.VGG16(weights='imagenet'), 'vgg19': lambda: models.vgg19.VGG19(weights='imagenet'), "resnet50": lambda: models.resnet50.ResNet50(weights='imagenet'), "inception_v3": lambda: models.inception_v3.InceptionV3(weights='imagenet'), "yolo_v3": lambda: _load_yolov3_model(), "ssd300": lambda: _load_ssd300_model(), "retina_resnet_50": lambda: _load_retinanet_resnet50_model() } _load_model = switcher.get(model_name, None) _model = _load_model() from perceptron.models.classification.keras import KerasModel as ClsKerasModel from perceptron.models.detection.keras_ssd300 import KerasSSD300Model from perceptron.models.detection.keras_yolov3 import KerasYOLOv3Model from perceptron.models.detection.keras_retina_resnet50 import KerasResNet50RetinaNetModel import numpy as np format = get_image_format('keras', model_name) if format['bounds'][1] == 1: mean = np.array([0.485, 0.456, 0.406]).reshape((1, 1, 3)) std = np.array([0.229, 0.224, 0.225]).reshape((1, 1, 3)) preprocessing = (mean, std) else: preprocessing = (np.array([104, 116, 123]), 1) switcher = { 'yolo_v3': lambda x: KerasYOLOv3Model(x, bounds=(0, 1)), 'ssd300': lambda x: KerasSSD300Model(x, bounds=(0, 255)), 'retina_resnet_50': lambda x: KerasResNet50RetinaNetModel(None, bounds=(0, 255)), } _wrap_model = switcher.get( model_name, lambda x: ClsKerasModel(x, bounds=format['bounds'], preprocessing=preprocessing)) kmodel = _wrap_model(_model) return kmodel