Python torchvision.models.mobilenet_v2() Examples
The following are 6
code examples of torchvision.models.mobilenet_v2().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: main.py From Grad-CAM.pytorch with Apache License 2.0 | 6 votes |
def get_net(net_name, weight_path=None): """ 根据网络名称获取模型 :param net_name: 网络名称 :param weight_path: 与训练权重路径 :return: """ pretrain = weight_path is None # 没有指定权重路径,则加载默认的预训练权重 if net_name in ['vgg', 'vgg16']: net = models.vgg16(pretrained=pretrain) elif net_name == 'vgg19': net = models.vgg19(pretrained=pretrain) elif net_name in ['resnet', 'resnet50']: net = models.resnet50(pretrained=pretrain) elif net_name == 'resnet101': net = models.resnet101(pretrained=pretrain) elif net_name in ['densenet', 'densenet121']: net = models.densenet121(pretrained=pretrain) elif net_name in ['inception']: net = models.inception_v3(pretrained=pretrain) elif net_name in ['mobilenet_v2']: net = models.mobilenet_v2(pretrained=pretrain) elif net_name in ['shufflenet_v2']: net = models.shufflenet_v2_x1_0(pretrained=pretrain) else: raise ValueError('invalid network name:{}'.format(net_name)) # 加载指定路径的权重参数 if weight_path is not None and net_name.startswith('densenet'): pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = torch.load(weight_path) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] net.load_state_dict(state_dict) elif weight_path is not None: net.load_state_dict(torch.load(weight_path)) return net
Example #2
Source File: mobilenet.py From pywarm with MIT License | 6 votes |
def test(): """ Compare the classification result of WarmMobileNetV2 versus torchvision mobilenet_v2. """ new = WarmMobileNetV2() from torchvision.models import mobilenet_v2 old = mobilenet_v2() state = old.state_dict() for k in list(state.keys()): # Map parameters of old, e.g. layer2.0.conv1.weight s = k.split('.') # to parameters of new, e.g. layer2-0-conv1.weight s = '-'.join(s[:-1])+'.'+s[-1] state[s] = state.pop(k) new.load_state_dict(state) warm.util.summary(old) warm.util.summary(new) x = torch.randn(1, 3, 224, 224) with torch.no_grad(): old.eval() y_old = old(x) new.eval() y_new = new(x) if torch.equal(y_old, y_new): print('Success! Same results from old and new.') else: print('Warning! New and old produce different results.')
Example #3
Source File: auto_pruners_torch.py From nni with MIT License | 5 votes |
def get_trained_model(args, device, train_loader, val_loader, criterion): if args.model == 'LeNet': model = LeNet().to(device) optimizer = torch.optim.Adadelta(model.parameters(), lr=1) scheduler = StepLR(optimizer, step_size=1, gamma=0.7) for epoch in range(args.pretrain_epochs): train(args, model, device, train_loader, criterion, optimizer, epoch) scheduler.step() elif args.model == 'vgg16': model = VGG(depth=16).to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) scheduler = MultiStepLR( optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1) for epoch in range(args.pretrain_epochs): train(args, model, device, train_loader, criterion, optimizer, epoch) scheduler.step() elif args.model == 'resnet18': model = models.resnet18(pretrained=False, num_classes=10).to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) scheduler = MultiStepLR( optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1) for epoch in range(args.pretrain_epochs): train(args, model, device, train_loader, criterion, optimizer, epoch) scheduler.step() elif args.model == 'mobilenet_v2': model = models.mobilenet_v2(pretrained=True).to(device) if args.save_model: torch.save(model.state_dict(), os.path.join( args.experiment_data_dir, 'model_trained.pth')) print('Model trained saved to %s', args.experiment_data_dir) return model, optimizer
Example #4
Source File: test_torchvision_models.py From pytorch-cnn-finetune with MIT License | 5 votes |
def test_mobilenet_v2_model(input_var): original_model = torchvision_models.mobilenet_v2(pretrained=True) finetune_model = make_model( 'mobilenet_v2', num_classes=1000, pool=default, pretrained=True, ) copy_module_weights(original_model.classifier[-1], finetune_model._classifier) assert_equal_model_outputs(input_var, original_model, finetune_model)
Example #5
Source File: test_torchvision_models.py From pytorch-cnn-finetune with MIT License | 5 votes |
def test_mobilenet_v2_model_with_another_input_size(input_var): model = make_model('mobilenet_v2', num_classes=1000, pretrained=True) model(input_var)
Example #6
Source File: COVIDNet.py From MedicalZooPytorch with MIT License | 5 votes |
def __init__(self, classes, model='resnet18'): super(CNN, self).__init__() if (model == 'resnet18'): self.cnn = models.resnet18(pretrained=True) self.cnn.fc = nn.Linear(512, classes) elif (model == 'resnext50_32x4d'): self.cnn = models.resnext50_32x4d(pretrained=True) self.cnn.classifier = nn.Linear(1280, classes) elif (model == 'mobilenet_v2'): self.cnn = models.mobilenet_v2(pretrained=True) self.cnn.classifier = nn.Linear(1280, classes)