Python torchvision.models.vgg11() Examples

The following are 14 code examples of torchvision.models.vgg11(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torchvision.models , or try the search function .
Example #1
Source File: unet_models.py    From kaggle_carvana_segmentation with MIT License 6 votes vote down vote up
def __init__(self, num_classes=1, num_filters=32):
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)
        self.encoder = models.vgg11(pretrained=True).features
        self.relu = self.encoder[1]
        self.conv1 = self.encoder[0]
        self.conv2 = self.encoder[3]
        self.conv3s = self.encoder[6]
        self.conv3 = self.encoder[8]
        self.conv4s = self.encoder[11]
        self.conv4 = self.encoder[13]
        self.conv5s = self.encoder[16]
        self.conv5 = self.encoder[18]

        self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
        self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
        self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
        self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
        self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
        self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)

        self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1) 
Example #2
Source File: ternausnets.py    From pneumothorax-segmentation with MIT License 5 votes vote down vote up
def __init__(self, num_filters=32, pretrained=False):
        """
        :param num_classes:
        :param num_filters:
        :param pretrained:
            False - no pre-trained network is used
            True  - encoder is pre-trained with VGG11
        """
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)

        self.encoder = models.vgg11(pretrained=pretrained).features

        self.relu = self.encoder[1]
        self.conv1 = self.encoder[0]
        self.conv2 = self.encoder[3]
        self.conv3s = self.encoder[6]
        self.conv3 = self.encoder[8]
        self.conv4s = self.encoder[11]
        self.conv4 = self.encoder[13]
        self.conv5s = self.encoder[16]
        self.conv5 = self.encoder[18]

        self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
        self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
        self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
        self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
        self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
        self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)

        self.final = nn.Conv2d(num_filters, 1, kernel_size=1) 
Example #3
Source File: tools.py    From perceptron-benchmark with Apache License 2.0 5 votes vote down vote up
def _load_pytorch_model(model_name, summary):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    import torch
    if torch.cuda.is_available():
        _model = _model.cuda()
    from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
    import numpy as np
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    pmodel = ClsPyTorchModel(
        _model, bounds=(
            0, 1), num_classes=1000, preprocessing=(
            mean, std))
    return pmodel 
Example #4
Source File: tools.py    From perceptron-benchmark with Apache License 2.0 5 votes vote down vote up
def load_pytorch_model(model_name):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    return _model 
Example #5
Source File: vgg11.py    From Distilling-Object-Detectors with MIT License 5 votes vote down vote up
def _init_modules(self):
        vgg = models.vgg11()
        if self.pretrained:
            print("Loading pretrained weights from %s" % (self.model_path))
            state_dict = torch.load(self.model_path)
            vgg.load_state_dict({k: v for k, v in state_dict.items() if k in vgg.state_dict()})

        vgg.classifier = nn.Sequential(*list(vgg.classifier._modules.values())[:-1])

        # not using the last maxpool layer
        self.RCNN_base = nn.Sequential(*list(vgg.features._modules.values())[:-1])

        # Fix the layers before conv3:
        for layer in range(7):
            for p in self.RCNN_base[layer].parameters(): p.requires_grad = False

        # self.RCNN_base = _RCNN_base(vgg.features, self.classes, self.dout_base_model)

        self.RCNN_top = vgg.classifier

        # not using the last maxpool layer
        self.RCNN_cls_score = nn.Linear(4096, self.n_classes)

        self.stu_feature_adap = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1),
                                              nn.ReLU())

        if self.class_agnostic:
            self.RCNN_bbox_pred = nn.Linear(4096, 4)
        else:
            self.RCNN_bbox_pred = nn.Linear(4096, 4 * self.n_classes) 
Example #6
Source File: torchvision_models.py    From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def vgg11(num_classes=1000, pretrained='imagenet'):
    """VGG 11-layer model (configuration "A")
    """
    model = models.vgg11(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['vgg11'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_vggs(model)
    return model 
Example #7
Source File: main.py    From fine-tuning.pytorch with MIT License 5 votes vote down vote up
def getNetwork(args):
    if (args.net_type == 'alexnet'):
        net = models.alexnet(pretrained=args.finetune)
        file_name = 'alexnet'
    elif (args.net_type == 'vggnet'):
        if(args.depth == 11):
            net = models.vgg11(pretrained=args.finetune)
        elif(args.depth == 13):
            net = models.vgg13(pretrained=args.finetune)
        elif(args.depth == 16):
            net = models.vgg16(pretrained=args.finetune)
        elif(args.depth == 19):
            net = models.vgg19(pretrained=args.finetune)
        else:
            print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
            sys.exit(1)
        file_name = 'vgg-%s' %(args.depth)
    elif (args.net_type == 'squeezenet'):
        net = models.squeezenet1_0(pretrained=args.finetune)
        file_name = 'squeeze'
    elif (args.net_type == 'resnet'):
        net = resnet(args.finetune, args.depth)
        file_name = 'resnet-%s' %(args.depth)
    elif (args.net_type == 'inception'):
        net = pretrainedmodels.inceptionv3(num_classes=1000, pretrained='imagenet')
        file_name = 'inception-v3'
    elif (args.net_type == 'xception'):
        net = pretrainedmodels.xception(num_classes=1000, pretrained='imagenet')
        file_name = 'xception'
    else:
        print('Error : Network should be either [alexnet / squeezenet / vggnet / resnet]')
        sys.exit(1)

    return net, file_name 
Example #8
Source File: unet_models.py    From open-solution-data-science-bowl-2018 with MIT License 5 votes vote down vote up
def __init__(self, num_classes=1, num_filters=32, pretrained=False):
        """
        :param num_classes:
        :param num_filters:
        :param pretrained:
            False - no pre-trained network is used
            True  - encoder is pre-trained with VGG11
        """
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)

        self.encoder = models.vgg11(pretrained=pretrained).features

        self.relu = self.encoder[1]
        self.conv1 = self.encoder[0]
        self.conv2 = self.encoder[3]
        self.conv3s = self.encoder[6]
        self.conv3 = self.encoder[8]
        self.conv4s = self.encoder[11]
        self.conv4 = self.encoder[13]
        self.conv5s = self.encoder[16]
        self.conv5 = self.encoder[18]

        self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
        self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
        self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
        self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
        self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
        self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)

        self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1) 
Example #9
Source File: torchvision_models.py    From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def vgg11(num_classes=1000, pretrained='imagenet'):
    """VGG 11-layer model (configuration "A")
    """
    model = models.vgg11(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['vgg11'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    return model 
Example #10
Source File: unet_models.py    From open-solution-mapping-challenge with MIT License 5 votes vote down vote up
def __init__(self, num_classes=1, num_filters=32, pretrained=False):
        """
        :param num_classes:
        :param num_filters:
        :param pretrained:
            False - no pre-trained network is used
            True  - encoder is pre-trained with VGG11
        """
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)

        self.encoder = models.vgg11(pretrained=pretrained).features

        self.relu = self.encoder[1]
        self.conv1 = self.encoder[0]
        self.conv2 = self.encoder[3]
        self.conv3s = self.encoder[6]
        self.conv3 = self.encoder[8]
        self.conv4s = self.encoder[11]
        self.conv4 = self.encoder[13]
        self.conv5s = self.encoder[16]
        self.conv5 = self.encoder[18]

        self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
        self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
        self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
        self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
        self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
        self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)

        self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1) 
Example #11
Source File: main.py    From gradcam.pytorch with MIT License 5 votes vote down vote up
def getNetwork(args):
    if (args.net_type == 'alexnet'):
        net = models.alexnet(pretrained=args.finetune)
        file_name = 'alexnet'
    elif (args.net_type == 'vggnet'):
        if(args.depth == 11):
            net = models.vgg11(pretrained=args.finetune)
        elif(args.depth == 13):
            net = models.vgg13(pretrained=args.finetune)
        elif(args.depth == 16):
            net = models.vgg16(pretrained=args.finetune)
        elif(args.depth == 19):
            net = models.vgg19(pretrained=args.finetune)
        else:
            print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
            sys.exit(1)
        file_name = 'vgg-%s' %(args.depth)
    elif (args.net_type == 'resnet'):
        net = resnet(args.finetune, args.depth)

        file_name = 'resnet-%s' %(args.depth)
    else:
        print('Error : Network should be either [alexnet / vggnet / resnet / densenet]')
        sys.exit(1)

    return net, file_name 
Example #12
Source File: torchvision_models.py    From pretorched-x with MIT License 4 votes vote down vote up
def vgg11(num_classes=1000, pretrained='imagenet'):
    """VGG 11-layer model (configuration "A")
    """
    model = models.vgg11(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['vgg11'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_vggs(model)
    return model 
Example #13
Source File: models.py    From TernausNet with MIT License 4 votes vote down vote up
def __init__(self, num_filters: int = 32, pretrained: bool = False) -> None:
        """

        Args:
            num_filters:
            pretrained:
                False - no pre-trained network is used
                True  - encoder is pre-trained with VGG11
        """
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)

        self.encoder = models.vgg11(pretrained=pretrained).features

        self.relu = self.encoder[1]
        self.conv1 = self.encoder[0]
        self.conv2 = self.encoder[3]
        self.conv3s = self.encoder[6]
        self.conv3 = self.encoder[8]
        self.conv4s = self.encoder[11]
        self.conv4 = self.encoder[13]
        self.conv5s = self.encoder[16]
        self.conv5 = self.encoder[18]

        self.center = DecoderBlock(
            num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8
        )
        self.dec5 = DecoderBlock(
            num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8
        )
        self.dec4 = DecoderBlock(
            num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4
        )
        self.dec3 = DecoderBlock(
            num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2
        )
        self.dec2 = DecoderBlock(
            num_filters * (4 + 2), num_filters * 2 * 2, num_filters
        )
        self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)

        self.final = nn.Conv2d(num_filters, 1, kernel_size=1) 
Example #14
Source File: unet11.py    From segmentation-networks-benchmark with MIT License 4 votes vote down vote up
def __init__(self, num_classes=1, num_filters=32, pretrained=False):
        """
        :param num_classes:
        :param num_filters:
        :param pretrained:
            False - no pre-trained network used
            vgg - encoder pre-trained with VGG11
        """
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)

        self.num_classes = num_classes

        if pretrained == 'vgg':
            self.encoder = models.vgg11(pretrained=True).features
        else:
            self.encoder = models.vgg11(pretrained=False).features

        self.relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Sequential(self.encoder[0],
                                   self.relu)

        self.conv2 = nn.Sequential(self.encoder[3],
                                   self.relu)

        self.conv3 = nn.Sequential(
            self.encoder[6],
            self.relu,
            self.encoder[8],
            self.relu,
        )
        self.conv4 = nn.Sequential(
            self.encoder[11],
            self.relu,
            self.encoder[13],
            self.relu,
        )

        self.conv5 = nn.Sequential(
            self.encoder[16],
            self.relu,
            self.encoder[18],
            self.relu,
        )

        self.center = DecoderBlock(256 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv=True)
        self.dec5 = DecoderBlock(512 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv=True)
        self.dec4 = DecoderBlock(512 + num_filters * 8, num_filters * 8 * 2, num_filters * 4, is_deconv=True)
        self.dec3 = DecoderBlock(256 + num_filters * 4, num_filters * 4 * 2, num_filters * 2, is_deconv=True)
        self.dec2 = DecoderBlock(128 + num_filters * 2, num_filters * 2 * 2, num_filters, is_deconv=True)
        self.dec1 = ConvRelu(64 + num_filters, num_filters)

        self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)