Python torchvision.models.vgg11() Examples
The following are 14
code examples of torchvision.models.vgg11().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: unet_models.py From kaggle_carvana_segmentation with MIT License | 6 votes |
def __init__(self, num_classes=1, num_filters=32): super().__init__() self.pool = nn.MaxPool2d(2, 2) self.encoder = models.vgg11(pretrained=True).features self.relu = self.encoder[1] self.conv1 = self.encoder[0] self.conv2 = self.encoder[3] self.conv3s = self.encoder[6] self.conv3 = self.encoder[8] self.conv4s = self.encoder[11] self.conv4 = self.encoder[13] self.conv5s = self.encoder[16] self.conv5 = self.encoder[18] self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8) self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8) self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4) self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2) self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters) self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters) self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
Example #2
Source File: ternausnets.py From pneumothorax-segmentation with MIT License | 5 votes |
def __init__(self, num_filters=32, pretrained=False): """ :param num_classes: :param num_filters: :param pretrained: False - no pre-trained network is used True - encoder is pre-trained with VGG11 """ super().__init__() self.pool = nn.MaxPool2d(2, 2) self.encoder = models.vgg11(pretrained=pretrained).features self.relu = self.encoder[1] self.conv1 = self.encoder[0] self.conv2 = self.encoder[3] self.conv3s = self.encoder[6] self.conv3 = self.encoder[8] self.conv4s = self.encoder[11] self.conv4 = self.encoder[13] self.conv5s = self.encoder[16] self.conv5 = self.encoder[18] self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8) self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8) self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4) self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2) self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters) self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters) self.final = nn.Conv2d(num_filters, 1, kernel_size=1)
Example #3
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def _load_pytorch_model(model_name, summary): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() import torch if torch.cuda.is_available(): _model = _model.cuda() from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel import numpy as np mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) pmodel = ClsPyTorchModel( _model, bounds=( 0, 1), num_classes=1000, preprocessing=( mean, std)) return pmodel
Example #4
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def load_pytorch_model(model_name): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() return _model
Example #5
Source File: vgg11.py From Distilling-Object-Detectors with MIT License | 5 votes |
def _init_modules(self): vgg = models.vgg11() if self.pretrained: print("Loading pretrained weights from %s" % (self.model_path)) state_dict = torch.load(self.model_path) vgg.load_state_dict({k: v for k, v in state_dict.items() if k in vgg.state_dict()}) vgg.classifier = nn.Sequential(*list(vgg.classifier._modules.values())[:-1]) # not using the last maxpool layer self.RCNN_base = nn.Sequential(*list(vgg.features._modules.values())[:-1]) # Fix the layers before conv3: for layer in range(7): for p in self.RCNN_base[layer].parameters(): p.requires_grad = False # self.RCNN_base = _RCNN_base(vgg.features, self.classes, self.dout_base_model) self.RCNN_top = vgg.classifier # not using the last maxpool layer self.RCNN_cls_score = nn.Linear(4096, self.n_classes) self.stu_feature_adap = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU()) if self.class_agnostic: self.RCNN_bbox_pred = nn.Linear(4096, 4) else: self.RCNN_bbox_pred = nn.Linear(4096, 4 * self.n_classes)
Example #6
Source File: torchvision_models.py From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vgg11(num_classes=1000, pretrained='imagenet'): """VGG 11-layer model (configuration "A") """ model = models.vgg11(pretrained=False) if pretrained is not None: settings = pretrained_settings['vgg11'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_vggs(model) return model
Example #7
Source File: main.py From fine-tuning.pytorch with MIT License | 5 votes |
def getNetwork(args): if (args.net_type == 'alexnet'): net = models.alexnet(pretrained=args.finetune) file_name = 'alexnet' elif (args.net_type == 'vggnet'): if(args.depth == 11): net = models.vgg11(pretrained=args.finetune) elif(args.depth == 13): net = models.vgg13(pretrained=args.finetune) elif(args.depth == 16): net = models.vgg16(pretrained=args.finetune) elif(args.depth == 19): net = models.vgg19(pretrained=args.finetune) else: print('Error : VGGnet should have depth of either [11, 13, 16, 19]') sys.exit(1) file_name = 'vgg-%s' %(args.depth) elif (args.net_type == 'squeezenet'): net = models.squeezenet1_0(pretrained=args.finetune) file_name = 'squeeze' elif (args.net_type == 'resnet'): net = resnet(args.finetune, args.depth) file_name = 'resnet-%s' %(args.depth) elif (args.net_type == 'inception'): net = pretrainedmodels.inceptionv3(num_classes=1000, pretrained='imagenet') file_name = 'inception-v3' elif (args.net_type == 'xception'): net = pretrainedmodels.xception(num_classes=1000, pretrained='imagenet') file_name = 'xception' else: print('Error : Network should be either [alexnet / squeezenet / vggnet / resnet]') sys.exit(1) return net, file_name
Example #8
Source File: unet_models.py From open-solution-data-science-bowl-2018 with MIT License | 5 votes |
def __init__(self, num_classes=1, num_filters=32, pretrained=False): """ :param num_classes: :param num_filters: :param pretrained: False - no pre-trained network is used True - encoder is pre-trained with VGG11 """ super().__init__() self.pool = nn.MaxPool2d(2, 2) self.encoder = models.vgg11(pretrained=pretrained).features self.relu = self.encoder[1] self.conv1 = self.encoder[0] self.conv2 = self.encoder[3] self.conv3s = self.encoder[6] self.conv3 = self.encoder[8] self.conv4s = self.encoder[11] self.conv4 = self.encoder[13] self.conv5s = self.encoder[16] self.conv5 = self.encoder[18] self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8) self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8) self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4) self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2) self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters) self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters) self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
Example #9
Source File: torchvision_models.py From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vgg11(num_classes=1000, pretrained='imagenet'): """VGG 11-layer model (configuration "A") """ model = models.vgg11(pretrained=False) if pretrained is not None: settings = pretrained_settings['vgg11'][pretrained] model = load_pretrained(model, num_classes, settings) return model
Example #10
Source File: unet_models.py From open-solution-mapping-challenge with MIT License | 5 votes |
def __init__(self, num_classes=1, num_filters=32, pretrained=False): """ :param num_classes: :param num_filters: :param pretrained: False - no pre-trained network is used True - encoder is pre-trained with VGG11 """ super().__init__() self.pool = nn.MaxPool2d(2, 2) self.encoder = models.vgg11(pretrained=pretrained).features self.relu = self.encoder[1] self.conv1 = self.encoder[0] self.conv2 = self.encoder[3] self.conv3s = self.encoder[6] self.conv3 = self.encoder[8] self.conv4s = self.encoder[11] self.conv4 = self.encoder[13] self.conv5s = self.encoder[16] self.conv5 = self.encoder[18] self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8) self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8) self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4) self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2) self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters) self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters) self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
Example #11
Source File: main.py From gradcam.pytorch with MIT License | 5 votes |
def getNetwork(args): if (args.net_type == 'alexnet'): net = models.alexnet(pretrained=args.finetune) file_name = 'alexnet' elif (args.net_type == 'vggnet'): if(args.depth == 11): net = models.vgg11(pretrained=args.finetune) elif(args.depth == 13): net = models.vgg13(pretrained=args.finetune) elif(args.depth == 16): net = models.vgg16(pretrained=args.finetune) elif(args.depth == 19): net = models.vgg19(pretrained=args.finetune) else: print('Error : VGGnet should have depth of either [11, 13, 16, 19]') sys.exit(1) file_name = 'vgg-%s' %(args.depth) elif (args.net_type == 'resnet'): net = resnet(args.finetune, args.depth) file_name = 'resnet-%s' %(args.depth) else: print('Error : Network should be either [alexnet / vggnet / resnet / densenet]') sys.exit(1) return net, file_name
Example #12
Source File: torchvision_models.py From pretorched-x with MIT License | 4 votes |
def vgg11(num_classes=1000, pretrained='imagenet'): """VGG 11-layer model (configuration "A") """ model = models.vgg11(pretrained=False) if pretrained is not None: settings = pretrained_settings['vgg11'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_vggs(model) return model
Example #13
Source File: models.py From TernausNet with MIT License | 4 votes |
def __init__(self, num_filters: int = 32, pretrained: bool = False) -> None: """ Args: num_filters: pretrained: False - no pre-trained network is used True - encoder is pre-trained with VGG11 """ super().__init__() self.pool = nn.MaxPool2d(2, 2) self.encoder = models.vgg11(pretrained=pretrained).features self.relu = self.encoder[1] self.conv1 = self.encoder[0] self.conv2 = self.encoder[3] self.conv3s = self.encoder[6] self.conv3 = self.encoder[8] self.conv4s = self.encoder[11] self.conv4 = self.encoder[13] self.conv5s = self.encoder[16] self.conv5 = self.encoder[18] self.center = DecoderBlock( num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8 ) self.dec5 = DecoderBlock( num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8 ) self.dec4 = DecoderBlock( num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4 ) self.dec3 = DecoderBlock( num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2 ) self.dec2 = DecoderBlock( num_filters * (4 + 2), num_filters * 2 * 2, num_filters ) self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters) self.final = nn.Conv2d(num_filters, 1, kernel_size=1)
Example #14
Source File: unet11.py From segmentation-networks-benchmark with MIT License | 4 votes |
def __init__(self, num_classes=1, num_filters=32, pretrained=False): """ :param num_classes: :param num_filters: :param pretrained: False - no pre-trained network used vgg - encoder pre-trained with VGG11 """ super().__init__() self.pool = nn.MaxPool2d(2, 2) self.num_classes = num_classes if pretrained == 'vgg': self.encoder = models.vgg11(pretrained=True).features else: self.encoder = models.vgg11(pretrained=False).features self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Sequential(self.encoder[0], self.relu) self.conv2 = nn.Sequential(self.encoder[3], self.relu) self.conv3 = nn.Sequential( self.encoder[6], self.relu, self.encoder[8], self.relu, ) self.conv4 = nn.Sequential( self.encoder[11], self.relu, self.encoder[13], self.relu, ) self.conv5 = nn.Sequential( self.encoder[16], self.relu, self.encoder[18], self.relu, ) self.center = DecoderBlock(256 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv=True) self.dec5 = DecoderBlock(512 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv=True) self.dec4 = DecoderBlock(512 + num_filters * 8, num_filters * 8 * 2, num_filters * 4, is_deconv=True) self.dec3 = DecoderBlock(256 + num_filters * 4, num_filters * 4 * 2, num_filters * 2, is_deconv=True) self.dec2 = DecoderBlock(128 + num_filters * 2, num_filters * 2 * 2, num_filters, is_deconv=True) self.dec1 = ConvRelu(64 + num_filters, num_filters) self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)