Python torchvision.models.densenet161() Examples

The following are 8 code examples of torchvision.models.densenet161(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torchvision.models , or try the search function .
Example #1
Source File: models.py    From isic2019 with MIT License 5 votes vote down vote up
def Dense169(config):
    return models.densenet161(pretrained=True) 
Example #2
Source File: torchvision_models.py    From pretorched-x with MIT License 5 votes vote down vote up
def densenet161(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-161 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet161(num_classes=num_classes, pretrained=False)
    if pretrained is not None:
       # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        settings = pretrained_settings['densenet161'][pretrained]
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(settings['url'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    model = modify_densenets(model)
    return model

###############################################################
# InceptionV3 
Example #3
Source File: tools.py    From perceptron-benchmark with Apache License 2.0 5 votes vote down vote up
def _load_pytorch_model(model_name, summary):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    import torch
    if torch.cuda.is_available():
        _model = _model.cuda()
    from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
    import numpy as np
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    pmodel = ClsPyTorchModel(
        _model, bounds=(
            0, 1), num_classes=1000, preprocessing=(
            mean, std))
    return pmodel 
Example #4
Source File: tools.py    From perceptron-benchmark with Apache License 2.0 5 votes vote down vote up
def load_pytorch_model(model_name):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    return _model 
Example #5
Source File: torch_imports.py    From pytorch-serverless with MIT License 5 votes vote down vote up
def dn161(pre): return children(densenet161(pre))[0] 
Example #6
Source File: torchvision_models.py    From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def densenet161(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-161 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet161(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['densenet161'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_densenets(model)
    return model

###############################################################
# InceptionV3 
Example #7
Source File: basenet.py    From MCD_DA with MIT License 5 votes vote down vote up
def __init__(self,option = 'densenet201',pret=True):
        super(DenseBase, self).__init__()
        self.dim = 2048
        if option == 'densenet201':
            model_ft = models.densenet201(pretrained=pret)
            self.dim = 1920
        if option == 'densenet161':
            model_ft = models.densenet161(pretrained=pret)
            self.dim = 2208
        mod = list(model_ft.children())
        #mod.pop()

        self.features = nn.Sequential(*mod) 
Example #8
Source File: torchvision_models.py    From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def densenet161(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-161 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet161(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['densenet161'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_densenets(model)
    return model

###############################################################
# InceptionV3