Python torchvision.models.squeezenet1_0() Examples
The following are 7
code examples of torchvision.models.squeezenet1_0().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: torchvision_models.py From pretorched-x with MIT License | 5 votes |
def squeezenet1_0(num_classes=1000, pretrained='imagenet'): r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper. """ model = models.squeezenet1_0(pretrained=False) if pretrained is not None: settings = pretrained_settings['squeezenet1_0'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_squeezenets(model) return model
Example #2
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def _load_pytorch_model(model_name, summary): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() import torch if torch.cuda.is_available(): _model = _model.cuda() from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel import numpy as np mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) pmodel = ClsPyTorchModel( _model, bounds=( 0, 1), num_classes=1000, preprocessing=( mean, std)) return pmodel
Example #3
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def load_pytorch_model(model_name): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() return _model
Example #4
Source File: torchvision_models.py From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def squeezenet1_0(num_classes=1000, pretrained='imagenet'): r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper. """ model = models.squeezenet1_0(pretrained=False) if pretrained is not None: settings = pretrained_settings['squeezenet1_0'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_squeezenets(model) return model
Example #5
Source File: main.py From fine-tuning.pytorch with MIT License | 5 votes |
def getNetwork(args): if (args.net_type == 'alexnet'): net = models.alexnet(pretrained=args.finetune) file_name = 'alexnet' elif (args.net_type == 'vggnet'): if(args.depth == 11): net = models.vgg11(pretrained=args.finetune) elif(args.depth == 13): net = models.vgg13(pretrained=args.finetune) elif(args.depth == 16): net = models.vgg16(pretrained=args.finetune) elif(args.depth == 19): net = models.vgg19(pretrained=args.finetune) else: print('Error : VGGnet should have depth of either [11, 13, 16, 19]') sys.exit(1) file_name = 'vgg-%s' %(args.depth) elif (args.net_type == 'squeezenet'): net = models.squeezenet1_0(pretrained=args.finetune) file_name = 'squeeze' elif (args.net_type == 'resnet'): net = resnet(args.finetune, args.depth) file_name = 'resnet-%s' %(args.depth) elif (args.net_type == 'inception'): net = pretrainedmodels.inceptionv3(num_classes=1000, pretrained='imagenet') file_name = 'inception-v3' elif (args.net_type == 'xception'): net = pretrainedmodels.xception(num_classes=1000, pretrained='imagenet') file_name = 'xception' else: print('Error : Network should be either [alexnet / squeezenet / vggnet / resnet]') sys.exit(1) return net, file_name
Example #6
Source File: torchvision_models.py From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def squeezenet1_0(num_classes=1000, pretrained='imagenet'): r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper. """ model = models.squeezenet1_0(pretrained=False) if pretrained is not None: settings = pretrained_settings['squeezenet1_0'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_squeezenets(model) return model
Example #7
Source File: squeezenet.py From pytorch-lighthead with MIT License | 4 votes |
def _init_modules(self): if self.version == '1_0': squeezenet = models.squeezenet1_0() self.clip = -2 elif self.version == '1_1': squeezenet = models.squeezenet1_1() self.clip = -5 if self.pretrained: print("Loading pretrained weights from %s" %(self.model_path)) if torch.cuda.is_available(): state_dict = torch.load(self.model_path) else: state_dict = torch.load(self.model_path, map_location=lambda storage, loc: storage) squeezenet.load_state_dict({k:v for k,v in state_dict.items() if k in squeezenet.state_dict()}) squeezenet.classifier = nn.Sequential(*list(squeezenet.classifier._modules.values())[:-1]) # not using the last maxpool layer if self.lighthead: self.RCNN_base = nn.Sequential(*list(squeezenet.features._modules.values())[:self.clip]) else: self.RCNN_base = nn.Sequential(*list(squeezenet.features._modules.values())) # Fix Layers for layer in range(len(self.RCNN_base)): for p in self.RCNN_base[layer].parameters(): p.requires_grad = False # self.RCNN_base = _RCNN_base(vgg.features, self.classes, self.dout_base_model) if self.lighthead: self.lighthead_base = nn.Sequential(*list(squeezenet.features._modules.values())[self.clip+1:]) self.RCNN_top = nn.Sequential(nn.Linear(490 * 7 * 7, 2048), nn.ReLU(inplace=True)) else: self.RCNN_top = squeezenet.classifier d_in = 2048 if self.lighthead else 512 # not using the last maxpool layer self.RCNN_cls_score = nn.Linear(d_in, self.n_classes) if self.class_agnostic: self.RCNN_bbox_pred = nn.Linear(d_in, 4) else: self.RCNN_bbox_pred = nn.Linear(d_in, 4 * self.n_classes)