Python torchvision.models.squeezenet1_1() Examples
The following are 19
code examples of torchvision.models.squeezenet1_1().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: extractor.py From DeepSpectrum with GNU General Public License v3.0 | 6 votes |
def __init__(self, images, model_key, layer, batch_size=256): super().__init__(images, batch_size) self.models = { "alexnet": models.alexnet, "squeezenet": models.squeezenet1_1, "googlenet": models.googlenet } self.preprocessors = { "alexnet": self.__preprocess_alexnet, "squeezenet": self.__preprocess_squeezenet, "googlenet": self.__preprocess_googlenet } self.batch_size = batch_size self.layer = layer self.model_key = model_key self.model, self.feature_layer, self.output_size = self.__build_model( layer)
Example #2
Source File: test_attack_Gaussian_blur.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_squeezenet1_1(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.squeezenet1_1(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #3
Source File: test_attack_AdditiveGaussianNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_squeezenet1_1(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.squeezenet1_1(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #4
Source File: test_attack_AdditiveUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_squeezenet1_1(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.squeezenet1_1(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #5
Source File: test_attack_BlendedUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_squeezenet1_1(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.squeezenet1_1(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #6
Source File: test_attack_MotionBlurAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_squeezenet1_1(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.squeezenet1_1(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #7
Source File: torchvision_models.py From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def squeezenet1_1(num_classes=1000, pretrained='imagenet'): r"""SqueezeNet 1.1 model from the `official SqueezeNet repo <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. """ model = models.squeezenet1_1(pretrained=False) if pretrained is not None: settings = pretrained_settings['squeezenet1_1'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_squeezenets(model) return model ############################################################### # VGGs
Example #8
Source File: squezenet_qc.py From AD-DL with MIT License | 5 votes |
def squeezenet_qc(pretrained=False, **kwargs): """Constructs a SqueezeNet 1.1 model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = SqueezeNetQC(version=1.1, **kwargs) if pretrained: # load basic Resnet model model_ft = models.squeezenet1_1(pretrained=True) model.load_from_std(model_ft) return model
Example #9
Source File: pretrained_networks.py From SMIT with MIT License | 5 votes |
def __init__(self, requires_grad=False, pretrained=True): super(squeezenet, self).__init__() pretrained_features = models.squeezenet1_1( pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.slice6 = torch.nn.Sequential() self.slice7 = torch.nn.Sequential() self.N_slices = 7 for x in range(2): self.slice1.add_module(str(x), pretrained_features[x]) for x in range(2, 5): self.slice2.add_module(str(x), pretrained_features[x]) for x in range(5, 8): self.slice3.add_module(str(x), pretrained_features[x]) for x in range(8, 10): self.slice4.add_module(str(x), pretrained_features[x]) for x in range(10, 11): self.slice5.add_module(str(x), pretrained_features[x]) for x in range(11, 12): self.slice6.add_module(str(x), pretrained_features[x]) for x in range(12, 13): self.slice7.add_module(str(x), pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False
Example #10
Source File: pretrained_networks.py From TecoGAN with Apache License 2.0 | 5 votes |
def __init__(self, requires_grad=False, pretrained=True): super(squeezenet, self).__init__() pretrained_features = models.squeezenet1_1(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.slice6 = torch.nn.Sequential() self.slice7 = torch.nn.Sequential() self.N_slices = 7 for x in range(2): self.slice1.add_module(str(x), pretrained_features[x]) for x in range(2,5): self.slice2.add_module(str(x), pretrained_features[x]) for x in range(5, 8): self.slice3.add_module(str(x), pretrained_features[x]) for x in range(8, 10): self.slice4.add_module(str(x), pretrained_features[x]) for x in range(10, 11): self.slice5.add_module(str(x), pretrained_features[x]) for x in range(11, 12): self.slice6.add_module(str(x), pretrained_features[x]) for x in range(12, 13): self.slice7.add_module(str(x), pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False
Example #11
Source File: pretrained_networks.py From PerceptualSimilarity with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, requires_grad=False, pretrained=True): super(squeezenet, self).__init__() pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.slice6 = torch.nn.Sequential() self.slice7 = torch.nn.Sequential() self.N_slices = 7 for x in range(2): self.slice1.add_module(str(x), pretrained_features[x]) for x in range(2,5): self.slice2.add_module(str(x), pretrained_features[x]) for x in range(5, 8): self.slice3.add_module(str(x), pretrained_features[x]) for x in range(8, 10): self.slice4.add_module(str(x), pretrained_features[x]) for x in range(10, 11): self.slice5.add_module(str(x), pretrained_features[x]) for x in range(11, 12): self.slice6.add_module(str(x), pretrained_features[x]) for x in range(12, 13): self.slice7.add_module(str(x), pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False
Example #12
Source File: models.py From adversarial-object-removal with MIT License | 5 votes |
def __init__(self, requires_grad=False, pretrained=True): super(squeezenet, self).__init__() pretrained_features = models.squeezenet1_1(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.slice6 = torch.nn.Sequential() self.slice7 = torch.nn.Sequential() self.N_slices = 7 for x in range(2): self.slice1.add_module(str(x), pretrained_features[x]) for x in range(2,5): self.slice2.add_module(str(x), pretrained_features[x]) for x in range(5, 8): self.slice3.add_module(str(x), pretrained_features[x]) for x in range(8, 10): self.slice4.add_module(str(x), pretrained_features[x]) for x in range(10, 11): self.slice5.add_module(str(x), pretrained_features[x]) for x in range(11, 12): self.slice6.add_module(str(x), pretrained_features[x]) for x in range(12, 13): self.slice7.add_module(str(x), pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False
Example #13
Source File: sqeezenet.py From MOTDT with MIT License | 5 votes |
def __init__(self, pretrained=True): super(FeatExtractorSqueezeNetx16, self).__init__() print("loading layers from squeezenet1_1...") sq = models.squeezenet1_1(pretrained=pretrained) self.conv1 = nn.Sequential( sq.features[0], sq.features[1], ) self.conv2 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=2, padding=1), sq.features[3], sq.features[4], ) self.conv3 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=2, padding=1), sq.features[6], sq.features[7], ) self.conv4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=2, padding=1), sq.features[9], sq.features[10], sq.features[11], sq.features[12], ) self.conv1[0].padding = (1, 1)
Example #14
Source File: torchvision_models.py From pretorched-x with MIT License | 5 votes |
def squeezenet1_1(num_classes=1000, pretrained='imagenet'): r"""SqueezeNet 1.1 model from the `official SqueezeNet repo <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. """ model = models.squeezenet1_1(pretrained=False) if pretrained is not None: settings = pretrained_settings['squeezenet1_1'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_squeezenets(model) return model ############################################################### # VGGs
Example #15
Source File: pspnet.py From pytorch-hair-segmentation with MIT License | 5 votes |
def __init__(self): super(SqueezeNetExtractor, self).__init__() model = squeezenet1_1(pretrained=True) features = model.features self.feature1 = features[:2] self.feature2 = features[2:5] self.feature3 = features[5:8] self.feature4 = features[8:]
Example #16
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def load_pytorch_model(model_name): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() return _model
Example #17
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def _load_pytorch_model(model_name, summary): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() import torch if torch.cuda.is_available(): _model = _model.cuda() from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel import numpy as np mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) pmodel = ClsPyTorchModel( _model, bounds=( 0, 1), num_classes=1000, preprocessing=( mean, std)) return pmodel
Example #18
Source File: squeezenet.py From pytorch-lighthead with MIT License | 4 votes |
def _init_modules(self): if self.version == '1_0': squeezenet = models.squeezenet1_0() self.clip = -2 elif self.version == '1_1': squeezenet = models.squeezenet1_1() self.clip = -5 if self.pretrained: print("Loading pretrained weights from %s" %(self.model_path)) if torch.cuda.is_available(): state_dict = torch.load(self.model_path) else: state_dict = torch.load(self.model_path, map_location=lambda storage, loc: storage) squeezenet.load_state_dict({k:v for k,v in state_dict.items() if k in squeezenet.state_dict()}) squeezenet.classifier = nn.Sequential(*list(squeezenet.classifier._modules.values())[:-1]) # not using the last maxpool layer if self.lighthead: self.RCNN_base = nn.Sequential(*list(squeezenet.features._modules.values())[:self.clip]) else: self.RCNN_base = nn.Sequential(*list(squeezenet.features._modules.values())) # Fix Layers for layer in range(len(self.RCNN_base)): for p in self.RCNN_base[layer].parameters(): p.requires_grad = False # self.RCNN_base = _RCNN_base(vgg.features, self.classes, self.dout_base_model) if self.lighthead: self.lighthead_base = nn.Sequential(*list(squeezenet.features._modules.values())[self.clip+1:]) self.RCNN_top = nn.Sequential(nn.Linear(490 * 7 * 7, 2048), nn.ReLU(inplace=True)) else: self.RCNN_top = squeezenet.classifier d_in = 2048 if self.lighthead else 512 # not using the last maxpool layer self.RCNN_cls_score = nn.Linear(d_in, self.n_classes) if self.class_agnostic: self.RCNN_bbox_pred = nn.Linear(d_in, 4) else: self.RCNN_bbox_pred = nn.Linear(d_in, 4 * self.n_classes)
Example #19
Source File: torchvision_models.py From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License | 4 votes |
def squeezenet1_1(num_classes=1000, pretrained='imagenet'): r"""SqueezeNet 1.1 model from the `official SqueezeNet repo <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. """ model = models.squeezenet1_1(pretrained=False) if pretrained is not None: settings = pretrained_settings['squeezenet1_1'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_squeezenets(model) return model ############################################################### # VGGs #def modify_vggs(model): # # Modify attributs # model._features = model.features # del model.features # model.linear0 = model.classifier[0] # model.relu0 = model.classifier[1] # model.dropout0 = model.classifier[2] # model.linear1 = model.classifier[3] # model.relu1 = model.classifier[4] # model.dropout1 = model.classifier[5] # model.last_linear = model.classifier[6] # del model.classifier # # def features(self, input): # x = self._features(input) # x = x.view(x.size(0), -1) # x = self.linear0(x) # x = self.relu0(x) # x = self.dropout0(x) # x = self.linear1(x) # return x # # def logits(self, features): # x = self.relu1(features) # x = self.dropout1(x) # x = self.last_linear(x) # return x # # def forward(self, input): # x = self.features(input) # x = self.logits(x) # return x # # Modify methods # setattr(model.__class__, 'features', features) # setattr(model.__class__, 'logits', logits) # setattr(model.__class__, 'forward', forward) # return model