Python torchvision.models.densenet201() Examples
The following are 14
code examples of torchvision.models.densenet201().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: torchvision_models.py From pretorched-x with MIT License | 6 votes |
def densenet201(num_classes=1000, pretrained='imagenet'): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model = models.densenet201(num_classes=num_classes, pretrained=False) if pretrained is not None: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. settings = pretrained_settings['densenet201'][pretrained] pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(settings['url']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) model = modify_densenets(model) return model
Example #2
Source File: test_attack_Gaussian_blur.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_densenet201(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.densenet201(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #3
Source File: test_attack_AdditiveGaussianNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_densenet201(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.densenet201(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #4
Source File: test_attack_AdditiveUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_densenet201(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.densenet201(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #5
Source File: test_attack_BlendedUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_densenet201(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.densenet201(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #6
Source File: test_attack_MotionBlurAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_densenet201(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.densenet201(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #7
Source File: models.py From isic2019 with MIT License | 5 votes |
def Dense201(config): return models.densenet201(pretrained=True)
Example #8
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def _load_pytorch_model(model_name, summary): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() import torch if torch.cuda.is_available(): _model = _model.cuda() from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel import numpy as np mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) pmodel = ClsPyTorchModel( _model, bounds=( 0, 1), num_classes=1000, preprocessing=( mean, std)) return pmodel
Example #9
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def load_pytorch_model(model_name): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() return _model
Example #10
Source File: torch_imports.py From pytorch-serverless with MIT License | 5 votes |
def dn201(pre): return children(densenet201(pre))[0]
Example #11
Source File: torchvision_models.py From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def densenet201(num_classes=1000, pretrained='imagenet'): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model = models.densenet201(pretrained=False) if pretrained is not None: settings = pretrained_settings['densenet201'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_densenets(model) return model
Example #12
Source File: basenet.py From MCD_DA with MIT License | 5 votes |
def __init__(self,option = 'densenet201',pret=True): super(DenseBase, self).__init__() self.dim = 2048 if option == 'densenet201': model_ft = models.densenet201(pretrained=pret) self.dim = 1920 if option == 'densenet161': model_ft = models.densenet161(pretrained=pret) self.dim = 2208 mod = list(model_ft.children()) #mod.pop() self.features = nn.Sequential(*mod)
Example #13
Source File: torchvision_models.py From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def densenet201(num_classes=1000, pretrained='imagenet'): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model = models.densenet201(pretrained=False) if pretrained is not None: settings = pretrained_settings['densenet201'][pretrained] model = load_pretrained(model, num_classes, settings) model = modify_densenets(model) return model
Example #14
Source File: cnn_geometric_model.py From weakalign with MIT License | 4 votes |
def __init__(self, train_fe=False, feature_extraction_cnn='vgg', normalization=True, last_layer='', use_cuda=True): super(FeatureExtraction, self).__init__() self.normalization = normalization if feature_extraction_cnn == 'vgg': self.model = models.vgg16(pretrained=True) # keep feature extraction network up to indicated layer vgg_feature_layers=['conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1', 'relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1', 'conv3_2','relu3_2','conv3_3','relu3_3','pool3','conv4_1', 'relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','pool4', 'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','pool5'] if last_layer=='': last_layer = 'pool4' last_layer_idx = vgg_feature_layers.index(last_layer) self.model = nn.Sequential(*list(self.model.features.children())[:last_layer_idx+1]) if feature_extraction_cnn == 'resnet101': self.model = models.resnet101(pretrained=True) resnet_feature_layers = ['conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4'] if last_layer=='': last_layer = 'layer3' last_layer_idx = resnet_feature_layers.index(last_layer) resnet_module_list = [self.model.conv1, self.model.bn1, self.model.relu, self.model.maxpool, self.model.layer1, self.model.layer2, self.model.layer3, self.model.layer4] self.model = nn.Sequential(*resnet_module_list[:last_layer_idx+1]) if feature_extraction_cnn == 'resnet101_v2': self.model = models.resnet101(pretrained=True) # keep feature extraction network up to pool4 (last layer - 7) self.model = nn.Sequential(*list(self.model.children())[:-3]) if feature_extraction_cnn == 'densenet201': self.model = models.densenet201(pretrained=True) # keep feature extraction network up to denseblock3 # self.model = nn.Sequential(*list(self.model.features.children())[:-3]) # keep feature extraction network up to transitionlayer2 self.model = nn.Sequential(*list(self.model.features.children())[:-4]) if not train_fe: # freeze parameters for param in self.model.parameters(): param.requires_grad = False # move to GPU if use_cuda: self.model = self.model.cuda()