Python dotmap.DotMap() Examples
The following are 30
code examples of dotmap.DotMap().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dotmap
, or try the search function
.

Example #1
Source File: read_cfg.py From PEDRA with MIT License | 6 votes |
def read_cfg(config_filename='configs/main.cfg', verbose=False): parser = ConfigParser() parser.optionxform = str parser.read(config_filename) cfg = DotMap() if verbose: hyphens = '-' * int((80 - len(config_filename))/2) print(hyphens + ' ' + config_filename + ' ' + hyphens) for section_name in parser.sections(): if verbose: print('[' + section_name + ']') for name, value in parser.items(section_name): value = ConvertIfStringIsInt(value) cfg[name] = value spaces = ' ' * (30 - len(name)) if verbose: print(name + ':' + spaces + str(cfg[name])) return cfg
Example #2
Source File: kubernetes.py From monasca-docker with Apache License 2.0 | 6 votes |
def load_current_kube_credentials(): with open(os.path.expanduser(KUBE_CONFIG_PATH), 'r') as f: config = DotMap(yaml.safe_load(f)) ctx_name = config['current-context'] ctx = next(c for c in config.contexts if c.name == ctx_name) cluster = next(c for c in config.clusters if c.name == ctx.context.cluster).cluster if 'certificate-authority' in cluster: ca_cert = cluster['certificate-authority'] else: ca_cert = None if ctx.context.user: user = next(u for u in config.users if u.name == ctx.context.user).user return cluster.server, ca_cert, (user['client-certificate'], user['client-key']) else: return cluster.server, ca_cert, None
Example #3
Source File: cleanup.py From monasca-docker with Apache License 2.0 | 6 votes |
def label_defunct(client: KubernetesAPIClient, namespace: str, job: DotMap): job_name = job.metadata.name pods = client.get('/api/v1/namespaces/{}/pods', namespace, params={'labelSelector': 'job-name={}'.format(job_name)}) defunct_ops = [{ 'op': 'add', 'path': '/metadata/labels/defunct', 'value': 'true' }] for pod in pods['items']: r = client.json_patch(defunct_ops, '/api/v1/namespaces/{}/pods/{}', namespace, pod.metadata.name, raise_for_status=False) if r.status_code != 200: # oh well logger.error( 'Failed to label pod as defunct: %s/%s', namespace, pod.metadata.name)
Example #4
Source File: kubernetes.py From monasca-docker with Apache License 2.0 | 6 votes |
def load_current_kube_credentials(): with open(os.path.expanduser(KUBE_CONFIG_PATH), 'r') as kcf: config = DotMap(yaml.safe_load(kcf)) ctx_name = config['current-context'] ctx = next(c for c in config.contexts if c.name == ctx_name) cluster = next(c for c in config.clusters if c.name == ctx.context.cluster).cluster if 'certificate-authority' in cluster: ca_cert = cluster['certificate-authority'] else: ca_cert = None if ctx.context.user: user = next(u for u in config.users if u.name == ctx.context.user).user return cluster.server, ca_cert, (user['client-certificate'], user['client-key']) return cluster.server, ca_cert, None
Example #5
Source File: test_bayesianOptimization.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_bayesianOptimization(): carDomain = Struct({ 'position': Box([-10,10], [-10,10], [0,1]), 'heading': Box([0, math.pi]), }) space = FeatureSpace({ 'cars': Feature(Array(carDomain, [2])) }) def f(sample): sample = sample.cars[0].heading[0] return abs(sample - 0.75) bo_params = DotMap() bo_params.init_num = 2 sampler = FeatureSampler.bayesianOptimizationSamplerFor(space, BO_params=bo_params) sampleWithFeedback(sampler, 3, f)
Example #6
Source File: test_crossEntropy.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_feedback_multiple_lengths(): space = FeatureSpace({ 'a': Feature(Box((0, 1)), lengthDomain=DiscreteBox((1, 2))) }) def f(sample): assert 1 <= len(sample.a) <= 2 return -1 if len(sample.a) == 1 and sample.a[0][0] < 0.5 else 1 ce_params = DotMap(alpha=0.5, thres=0) ce_params.cont.buckets = 2 ce_params.cont.dist = None ce_params.disc.dist = None sampler = FeatureSampler.crossEntropySamplerFor(space, ce_params) sampleWithFeedback(sampler, 100, f) l1sampler = sampler.domainSamplers[sampler.lengthDomain.makePoint(a=(1,))] l1dist = l1sampler.cont_sampler.dist[0] l2sampler = sampler.domainSamplers[sampler.lengthDomain.makePoint(a=(2,))] l2dists = l2sampler.cont_sampler.dist assert len(l1dist) == 2 assert l1dist[0] > 0.9 assert all(list(l2dist) == [0.5, 0.5] for l2dist in l2dists)
Example #7
Source File: read_cfg.py From DRLwithTL with MIT License | 6 votes |
def read_env_cfg(config_filename = 'configs/main.cfg'): # Load from config file cfg = DotMap() config = cp.ConfigParser() config.read(config_filename) cfg.run_name = config.get('general_params', 'env_name') cfg.floorplan = str(config.get('general_params', 'floorplan')) cfg.o_x = float(config.get('general_params', 'o_x').split(',')[0]) cfg.o_y = float(config.get('general_params', 'o_y').split(',')[0]) cfg.alpha = float(config.get('general_params', 'alpha').split(',')[0]) cfg.ceiling_z = float(config.get('general_params', 'ceiling_z').split(',')[0]) cfg.floor_z = float(config.get('general_params', 'floor_z').split(',')[0]) cfg.player_start_z = float(config.get('general_params', 'player_start_z').split(',')[0]) return cfg
Example #8
Source File: test_halton.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_halton(): carDomain = Struct({ 'position': Box([-10,10], [-10,10], [0,1]), 'heading': Box([0, math.pi]), 'model': DiscreteBox([0, 10]) }) space = FeatureSpace({ 'weather': Feature(DiscreteBox([0,12])), 'cars': Feature(Array(carDomain, [2])) }) halton_params = DotMap() halton_params.sample_index = -2 halton_params.bases_skipped = 0 sampler = FeatureSampler.haltonSamplerFor(space, halton_params) for i in range(3): print(f'Sample #{i}:') print(sampler.nextSample())
Example #9
Source File: Agent.py From handful-of-trials with MIT License | 6 votes |
def __init__(self, params): """Initializes an agent. Arguments: params: (DotMap) A DotMap of agent parameters. .env: (OpenAI gym environment) The environment for this agent. .noisy_actions: (bool) Indicates whether random Gaussian noise will be added to the actions of this agent. .noise_stddev: (float) The standard deviation to be used for the action noise if params.noisy_actions is True. """ self.env = params.env self.noise_stddev = params.noise_stddev if params.get("noisy_actions", False) else None if isinstance(self.env, DotMap): raise ValueError("Environment must be provided to the agent at initialization.") if (not isinstance(self.noise_stddev, float)) and params.get("noisy_actions", False): raise ValueError("Must provide standard deviation for noise for noisy actions.") if self.noise_stddev is not None: self.dU = self.env.action_space.shape[0]
Example #10
Source File: render.py From handful-of-trials with MIT License | 6 votes |
def main(env, ctrl_type, ctrl_args, overrides, model_dir, logdir): ctrl_args = DotMap(**{key: val for (key, val) in ctrl_args}) overrides.append(["ctrl_cfg.prop_cfg.model_init_cfg.model_dir", model_dir]) overrides.append(["ctrl_cfg.prop_cfg.model_init_cfg.load_model", "True"]) overrides.append(["ctrl_cfg.prop_cfg.model_pretrained", "True"]) overrides.append(["exp_cfg.exp_cfg.ninit_rollouts", "0"]) overrides.append(["exp_cfg.exp_cfg.ntrain_iters", "1"]) overrides.append(["exp_cfg.log_cfg.nrecord", "1"]) cfg = create_config(env, ctrl_type, ctrl_args, overrides, logdir) cfg.pprint() if ctrl_type == "MPC": cfg.exp_cfg.exp_cfg.policy = MPC(cfg.ctrl_cfg) exp = MBExperiment(cfg.exp_cfg) os.makedirs(exp.logdir) with open(os.path.join(exp.logdir, "config.txt"), "w") as f: f.write(pprint.pformat(cfg.toDict())) exp.run_experiment()
Example #11
Source File: test_offset.py From beziers.py with MIT License | 5 votes |
def not_a_test_offset(self): b = DotMap({ "closed": False, "nodes": [ {"x": 412.0, "y":500.0, "type":"line"}, {"x": 308.0, "y":665.0, "type":"offcurve"}, {"x": 163.0, "y":589.0, "type":"offcurve"}, {"x": 163.0, "y":504.0, "type":"curve"}, {"x": 163.0, "y":424.0, "type":"offcurve"}, {"x": 364.0, "y":321.0, "type":"offcurve"}, {"x": 366.0, "y":216.0, "type":"curve"}, {"x": 368.0, "y":94.0, "type":"offcurve"}, {"x": 260.0, "y":54.0, "type":"offcurve"}, {"x": 124.0, "y":54.0, "type":"curve"} ]}) path = BezierPath() path.activeRepresentation = GSPathRepresentation(path,b) import matplotlib.pyplot as plt fig, ax = plt.subplots() path.addExtremes() path.plot(ax) for n in path.asSegments(): p = n.tunniPoint if p: circle = plt.Circle((p.x, p.y), 1, fill=False, color="blue") ax.add_artist(circle) n.balance() path.translate(Point(5,5)) path.plot(ax, color="red") # o1 = path.offset(Point(10,10)) # o2 = path.offset(Point(-10,-10)) # o2.reverse() # o1.append(o2) # o1.plot(ax) plt.show()
Example #12
Source File: test_bayesianOptimization.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_BO_oper(): vals = [] N = 10 for k in range(N): print("Testing k: ", k) def f(sample): x = sample.x[0] return (6 * x - 2) ** 2 * np.sin(12 * x - 4) space = FeatureSpace({'x': Feature(Box([0,1]))}) bo_params = DotMap() bo_params.init_num = 5 sampler = FeatureSampler.bayesianOptimizationSamplerFor(space, BO_params=bo_params) samples = [] y_samples = [] feedback = None for i in range(20): sample = sampler.nextSample(feedback) samples.append(sample) feedback = f(sample) y_samples.append(feedback) min_i = np.array(y_samples).argmin() vals.append(np.linalg.norm(samples[min_i].x[0]-0.75) < 0.1) assert sum(vals)/N >= 0.9
Example #13
Source File: test_path.py From beziers.py with MIT License | 5 votes |
def test_representations(self): b = DotMap({ "closed": True, "nodes": [ {"x":385.0, "y":20.0, "type":"offcurve"}, { "x":526.0, "y":79.0, "type":"offcurve"}, { "x":566.0, "y":135.0, "type":"curve"}, { "x":585.0, "y":162.0, "type":"offcurve"}, { "x":566.0, "y":260.0, "type":"offcurve"}, { "x":484.0, "y":281.0, "type":"curve"}, { "x":484.0, "y":407.0, "type":"offcurve"}, { "x":381.0, "y":510.0, "type":"offcurve"}, { "x":255.0, "y":510.0, "type":"curve"}, { "x":26.0, "y":281.0, "type":"line"}, { "x":26.0, "y":155.0, "type":"offcurve"}, { "x":129.0, "y":20.0, "type":"offcurve"}, { "x":255.0, "y":20.0, "type":"curve"} ]}) path = BezierPath() path.activeRepresentation = GSPathRepresentation(path,b) nl = path.asNodelist() self.assertEqual(len(nl), 13) self.assertIsInstance(nl[1], Node) self.assertEqual(nl[1].type,"offcurve") self.assertAlmostEqual(nl[1].x,526.0) segs = path.asSegments() self.assertEqual(len(segs), 5) self.assertIsInstance(segs[1], CubicBezier) self.assertIsInstance(segs[2], Line)
Example #14
Source File: __init__.py From news-please with Apache License 2.0 | 5 votes |
def from_html(html, url=None, download_date=None): """ Extracts relevant information from an HTML page given as a string. This function does not invoke scrapy but only uses the article extractor. If you have the original URL make sure to provide it as this helps NewsPlease to extract the publishing date and title. :param html: :param url: :return: """ extractor = article_extractor.Extractor( ['newspaper_extractor', 'readability_extractor', 'date_extractor', 'lang_detect_extractor']) title_encoded = ''.encode() if not url: url = '' # if an url was given, we can use that as the filename filename = urllib.parse.quote_plus(url) + '.json' item = NewscrawlerItem() item['spider_response'] = DotMap() item['spider_response'].body = html item['url'] = url item['source_domain'] = urllib.parse.urlparse(url).hostname.encode() if url != '' else ''.encode() item['html_title'] = title_encoded item['rss_title'] = title_encoded item['local_path'] = None item['filename'] = filename item['download_date'] = download_date item['modified_date'] = None item = extractor.extract(item) tmp_article = ExtractedInformationStorage.extract_relevant_info(item) final_article = ExtractedInformationStorage.convert_to_class(tmp_article) return final_article
Example #15
Source File: __init__.py From mbpo with MIT License | 5 votes |
def get_params_from_file(filepath, params_name='params'): import importlib from dotmap import DotMap module = importlib.import_module(filepath) params = getattr(module, params_name) params = DotMap(params) return params
Example #16
Source File: mbexp.py From handful-of-trials with MIT License | 5 votes |
def main(env, ctrl_type, ctrl_args, overrides, logdir): ctrl_args = DotMap(**{key: val for (key, val) in ctrl_args}) cfg = create_config(env, ctrl_type, ctrl_args, overrides, logdir) cfg.pprint() if ctrl_type == "MPC": cfg.exp_cfg.exp_cfg.policy = MPC(cfg.ctrl_cfg) exp = MBExperiment(cfg.exp_cfg) os.makedirs(exp.logdir) with open(os.path.join(exp.logdir, "config.txt"), "w") as f: f.write(pprint.pformat(cfg.toDict())) exp.run_experiment()
Example #17
Source File: pusher.py From handful-of-trials with MIT License | 5 votes |
def nn_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", num_networks=get_required_argument(model_init_cfg, "num_nets", "Must provide ensemble size"), sess=self.SESS, load_model=model_init_cfg.get("load_model", False), model_dir=model_init_cfg.get("model_dir", None) )) if not model_init_cfg.get("load_model", False): model.add(FC(200, input_dim=self.MODEL_IN, activation="swish", weight_decay=0.00025)) model.add(FC(200, activation="swish", weight_decay=0.0005)) model.add(FC(200, activation="swish", weight_decay=0.0005)) model.add(FC(self.MODEL_OUT, weight_decay=0.00075)) model.finalize(tf.train.AdamOptimizer, {"learning_rate": 0.001}) return model
Example #18
Source File: template.py From handful-of-trials with MIT License | 5 votes |
def nn_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", num_networks=get_required_argument(model_init_cfg, "num_nets", "Must provide ensemble size"), sess=self.SESS )) # Construct model below. For example: # model.add(FC(*args)) # ... # model.finalize(tf.train.AdamOptimizer, {"learning_rate": 0.001}) return model
Example #19
Source File: cartpole.py From handful-of-trials with MIT License | 5 votes |
def nn_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", num_networks=get_required_argument(model_init_cfg, "num_nets", "Must provide ensemble size"), sess=self.SESS, load_model=model_init_cfg.get("load_model", False), model_dir=model_init_cfg.get("model_dir", None) )) if not model_init_cfg.get("load_model", False): model.add(FC(500, input_dim=self.MODEL_IN, activation='swish', weight_decay=0.0001)) model.add(FC(500, activation='swish', weight_decay=0.00025)) model.add(FC(500, activation='swish', weight_decay=0.00025)) model.add(FC(self.MODEL_OUT, weight_decay=0.0005)) model.finalize(tf.train.AdamOptimizer, {"learning_rate": 0.001}) return model
Example #20
Source File: cartpole.py From handful-of-trials with MIT License | 5 votes |
def gp_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", kernel_class=get_required_argument(model_init_cfg, "kernel_class", "Must provide kernel class"), kernel_args=model_init_cfg.get("kernel_args", {}), num_inducing_points=get_required_argument( model_init_cfg, "num_inducing_points", "Must provide number of inducing points." ), sess=self.SESS )) return model
Example #21
Source File: halfcheetah.py From handful-of-trials with MIT License | 5 votes |
def nn_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", num_networks=get_required_argument(model_init_cfg, "num_nets", "Must provide ensemble size"), sess=self.SESS, load_model=model_init_cfg.get("load_model", False), model_dir=model_init_cfg.get("model_dir", None) )) if not model_init_cfg.get("load_model", False): model.add(FC(200, input_dim=self.MODEL_IN, activation="swish", weight_decay=0.000025)) model.add(FC(200, activation="swish", weight_decay=0.00005)) model.add(FC(200, activation="swish", weight_decay=0.000075)) model.add(FC(200, activation="swish", weight_decay=0.000075)) model.add(FC(self.MODEL_OUT, weight_decay=0.0001)) model.finalize(tf.train.AdamOptimizer, {"learning_rate": 0.001}) return model
Example #22
Source File: halfcheetah.py From handful-of-trials with MIT License | 5 votes |
def gp_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", kernel_class=get_required_argument(model_init_cfg, "kernel_class", "Must provide kernel class"), kernel_args=model_init_cfg.get("kernel_args", {}), num_inducing_points=get_required_argument( model_init_cfg, "num_inducing_points", "Must provide number of inducing points." ), sess=self.SESS )) return model
Example #23
Source File: reacher.py From handful-of-trials with MIT License | 5 votes |
def gp_constructor(self, model_init_cfg): model = get_required_argument(model_init_cfg, "model_class", "Must provide model class")(DotMap( name="model", kernel_class=get_required_argument(model_init_cfg, "kernel_class", "Must provide kernel class"), kernel_args=model_init_cfg.get("kernel_args", {}), num_inducing_points=get_required_argument( model_init_cfg, "num_inducing_points", "Must provide number of inducing points." ), sess=self.SESS )) return model
Example #24
Source File: configuration.py From taranis with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): parser = argparse.ArgumentParser(prog='Taranis', description='Taranis server') parser.add_argument('--config-file', '-F', dest='config_files', action='append', type=str, help='a list of yaml config files') parser.add_argument('--config-path', '-P', dest='config_paths', action='append', type=str, help='a list of directories in which the file paths are keys and file contents are value') parser.add_argument('--additional-config', '-C', dest='additional_config', action='append', type=str, help='a list of dotted.key=value configs') # args = parser.parse_args() args, unknowns = parser.parse_known_args() if unknowns: parser.print_usage() sys.exit(1) configurations = list() configurations.append(dict(i.split("=") for i in args.additional_config) if args.additional_config else dict()) configurations.append("env") if args.config_paths: configurations.extend(args.config_paths) if args.config_files: configurations.extend(args.config_files) conf_set = python_config(*configurations, prefix="TARANIS", remove_level=0) tempdict = dict() for key, value in conf_set.as_dict().items(): tree = key.split('.') root = tempdict for i, b in enumerate(tree): if b not in root: if (i + 1) == len(tree): root[b] = value else: root[b] = dict() root = root[b] self.dict = DotMap(tempdict)
Example #25
Source File: error_table.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
def analyze(self, analysis_params=None): analysis_data = DotMap() if analysis_params is None or ('pca' in analysis_params and analysis_params.pca) or 'pca' not in analysis_params: if analysis_params is not None and 'pca_params' in analysis_params: columns = analysis_params.pca_params.columns \ if 'columns' in analysis_params.pca_params else None n_components = analysis_params.pca_params.n_components \ if 'n_components' in analysis_params.pca_params else 1 else: columns, n_components = None, 1 analysis_data.pca = self.pca_analysis(column_names=columns, n_components=n_components) if analysis_params is None or ('k_closest' in analysis_params and analysis_params.k_closest) or 'k_closest' not in analysis_params: if analysis_params is not None and 'k_closest_params' in analysis_params: columns = analysis_params.k_closest_params.columns \ if 'columns' in analysis_params.k_closest_params else None k = analysis_params.k_closest_params.k \ if 'k' in analysis_params.k_closest_params else None else: columns, k = None, None analysis_data.k_closest = self.k_closest_samples(column_names=columns, k=k) if analysis_params is None or ('random' in analysis_params and analysis_params.random) or 'random' not in analysis_params: if analysis_params is not None and 'random_params' in analysis_params: count = analysis_params.random_params.count \ if 'count' in analysis_params.random_params else 5 else: count = 5 analysis_data.random = self.get_random_samples(count=count) if analysis_params is None or ('k_clusters' in analysis_params and analysis_params.k_clusters) or 'k_clusters' not in analysis_params: if analysis_params is not None and 'k_clusters_params' in analysis_params: columns = analysis_params.k_clusters_params.columns \ if 'columns' in analysis_params.k_clusters_params else None k = analysis_params.k_clusters_params.k \ if 'k' in analysis_params.k_clusters_params else None else: columns, k = None, None analysis_data.k_clusters = self.k_clusters(column_names=columns, k=k) return analysis_data
Example #26
Source File: file_utils.py From FARM with Apache License 2.0 | 5 votes |
def read_config(path): if path: with open(path) as json_data_file: conf_args = json.load(json_data_file) else: raise ValueError("No config provided for classifier") # flatten last part of config, take either value or default as value for gk, gv in conf_args.items(): for k, v in gv.items(): conf_args[gk][k] = v["value"] if (v["value"] is not None) else v["default"] # DotMap for making nested dictionary accessible through dot notation args = DotMap(conf_args, _dynamic=False) return args
Example #27
Source File: cleanup.py From monasca-docker with Apache License 2.0 | 5 votes |
def is_condition_complete(condition: DotMap) -> bool: return condition.type == 'Complete' and str(condition.status) == 'True'
Example #28
Source File: config.py From Keras-Project-Template with Apache License 2.0 | 5 votes |
def get_config_from_json(json_file): """ Get the config from a json file :param json_file: :return: config(namespace) or config(dictionary) """ # parse the configurations from the config json file provided with open(json_file, 'r') as config_file: config_dict = json.load(config_file) # convert the dictionary to a namespace using bunch lib config = DotMap(config_dict) return config, config_dict
Example #29
Source File: mountaincar_simulation.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, baselines_params=None): if baselines_params is None: baselines_params = DotMap() baselines_params.alg = 'ppo2' baselines_params.env_id = 'MountainCar-v0' baseline_params.num_timesteps = 1e3 else: if 'env_id' not in baseline_params or baseline_params.env_id !='MountainCar-v0': baseline_params.env_id = 'MountainCar-v0' if 'alg' not in baseline_params: baseline_params.alg = 'ppo2' super().__init__(baselines_params=baselines_params) if sample_type >= 1: self.run_task = self.run_task_retrain self.algs = ['ppo2', 'deepq', 'acer', 'a2c', 'trpo_mpi', 'acktr']
Example #30
Source File: cartpole_simulation.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, baselines_params=None): if baselines_params is None: baselines_params = DotMap() baselines_params.alg = 'ppo2' baselines_params.env_id = 'CartPole-v1' baseline_params.num_timesteps = 1e5 else: if 'env_id' not in baseline_params or baseline_params.env_id !='CartPole-v1': baseline_params.env_id = 'CartPole-v1' if 'alg' not in baseline_params: baseline_params.alg = 'ppo2' super().__init__(baselines_params=baselines_params) if sample_type >= 1: self.run_task = self.run_task_retrain self.algs = ['ppo2', 'deepq', 'acer', 'a2c', 'trpo_mpi', 'acktr']