Python torch.nn.init.constant_() Examples
The following are 30
code examples of torch.nn.init.constant_().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn.init
, or try the search function
.
Example #1
Source File: gat_layers.py From DeepInf with MIT License | 6 votes |
def __init__(self, n_head, f_in, f_out, attn_dropout, bias=True): super(BatchMultiHeadGraphAttention, self).__init__() self.n_head = n_head self.w = Parameter(torch.Tensor(n_head, f_in, f_out)) self.a_src = Parameter(torch.Tensor(n_head, f_out, 1)) self.a_dst = Parameter(torch.Tensor(n_head, f_out, 1)) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2) self.softmax = nn.Softmax(dim=-1) self.dropout = nn.Dropout(attn_dropout) if bias: self.bias = Parameter(torch.Tensor(f_out)) init.constant_(self.bias, 0) else: self.register_parameter('bias', None) init.xavier_uniform_(self.w) init.xavier_uniform_(self.a_src) init.xavier_uniform_(self.a_dst)
Example #2
Source File: network_msrresnet.py From KAIR with MIT License | 6 votes |
def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0)
Example #3
Source File: networks.py From MeshCNN with MIT License | 6 votes |
def init_weights(net, init_type, init_gain): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func)
Example #4
Source File: outputs.py From Parsing-R-CNN with MIT License | 6 votes |
def __init__(self, dim_in): super().__init__() self.dim_in = dim_in self.cls_on = cfg.FAST_RCNN.CLS_ON self.reg_on = cfg.FAST_RCNN.REG_ON if self.cls_on: self.cls_score = nn.Linear(self.dim_in, cfg.MODEL.NUM_CLASSES) init.normal_(self.cls_score.weight, std=0.01) init.constant_(self.cls_score.bias, 0) # self.avgpool = nn.AdaptiveAvgPool2d(1) if self.reg_on: if cfg.FAST_RCNN.CLS_AGNOSTIC_BBOX_REG: # bg and fg self.bbox_pred = nn.Linear(self.dim_in, 4 * 2) else: self.bbox_pred = nn.Linear(self.dim_in, 4 * cfg.MODEL.NUM_CLASSES) init.normal_(self.bbox_pred.weight, std=0.001) init.constant_(self.bbox_pred.bias, 0)
Example #5
Source File: utils.py From prediction-flow with MIT License | 6 votes |
def init_weights(model): if isinstance(model, nn.Linear): if model.weight is not None: init.kaiming_uniform_(model.weight.data) if model.bias is not None: init.normal_(model.bias.data) elif isinstance(model, nn.BatchNorm1d): if model.weight is not None: init.normal_(model.weight.data, mean=1, std=0.02) if model.bias is not None: init.constant_(model.bias.data, 0) elif isinstance(model, nn.BatchNorm2d): if model.weight is not None: init.normal_(model.weight.data, mean=1, std=0.02) if model.bias is not None: init.constant_(model.bias.data, 0) elif isinstance(model, nn.BatchNorm3d): if model.weight is not None: init.normal_(model.weight.data, mean=1, std=0.02) if model.bias is not None: init.constant_(model.bias.data, 0) else: pass
Example #6
Source File: gat_layers.py From DeepInf with MIT License | 6 votes |
def __init__(self, n_head, f_in, f_out, attn_dropout, bias=True): super(MultiHeadGraphAttention, self).__init__() self.n_head = n_head self.w = Parameter(torch.Tensor(n_head, f_in, f_out)) self.a_src = Parameter(torch.Tensor(n_head, f_out, 1)) self.a_dst = Parameter(torch.Tensor(n_head, f_out, 1)) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2) self.softmax = nn.Softmax(dim=-1) self.dropout = nn.Dropout(attn_dropout) if bias: self.bias = Parameter(torch.Tensor(f_out)) init.constant_(self.bias, 0) else: self.register_parameter('bias', None) init.xavier_uniform_(self.w) init.xavier_uniform_(self.a_src) init.xavier_uniform_(self.a_dst)
Example #7
Source File: CNN_GNN2018.py From Pytorch-Networks with MIT License | 6 votes |
def _initialize_weights_norm(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.normal_(m.weight, std=0.01) if m.bias is not None: # mobilenet conv2d doesn't add bias init.constant_(m.bias, 0.0) # last layer of these block don't have Relu init.normal_(self.model1_1[8].weight, std=0.01) init.normal_(self.model1_2[8].weight, std=0.01) init.normal_(self.model2_1[12].weight, std=0.01) init.normal_(self.model3_1[12].weight, std=0.01) init.normal_(self.model4_1[12].weight, std=0.01) init.normal_(self.model5_1[12].weight, std=0.01) init.normal_(self.model6_1[12].weight, std=0.01) init.normal_(self.model2_2[12].weight, std=0.01) init.normal_(self.model3_2[12].weight, std=0.01) init.normal_(self.model4_2[12].weight, std=0.01) init.normal_(self.model5_2[12].weight, std=0.01) init.normal_(self.model6_2[12].weight, std=0.01)
Example #8
Source File: module_util.py From BasicSR with Apache License 2.0 | 6 votes |
def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0)
Example #9
Source File: GNNlikeCNN2015.py From Pytorch-Networks with MIT License | 6 votes |
def _initialize_weights_norm(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.normal_(m.weight, std=0.01) if m.bias is not None: # mobilenet conv2d doesn't add bias init.constant_(m.bias, 0.0) # last layer of these block don't have Relu init.normal_(self.model1_1[8].weight, std=0.01) init.normal_(self.model1_2[8].weight, std=0.01) init.normal_(self.model2_1[12].weight, std=0.01) init.normal_(self.model3_1[12].weight, std=0.01) init.normal_(self.model4_1[12].weight, std=0.01) init.normal_(self.model5_1[12].weight, std=0.01) init.normal_(self.model6_1[12].weight, std=0.01) init.normal_(self.model2_2[12].weight, std=0.01) init.normal_(self.model3_2[12].weight, std=0.01) init.normal_(self.model4_2[12].weight, std=0.01) init.normal_(self.model5_2[12].weight, std=0.01) init.normal_(self.model6_2[12].weight, std=0.01)
Example #10
Source File: spnasnet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #11
Source File: rir_cifar.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #12
Source File: diapreresnet_cifar.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #13
Source File: bagnet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #14
Source File: condensenet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): init.constant_(module.weight, 1) init.constant_(module.bias, 0) elif isinstance(module, nn.Linear): init.constant_(module.bias, 0)
Example #15
Source File: preresnet_cifar.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #16
Source File: polynet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #17
Source File: inceptionv4.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #18
Source File: msdnet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #19
Source File: rnn.py From PySyft with Apache License 2.0 | 5 votes |
def reset_parameters(self): super(LSTMCell, self).reset_parameters() # Bias of forget gate should be initialize with 1 or 2 # Ref: http://proceedings.mlr.press/v37/jozefowicz15.pdf incr_bias = 1.0 / self.hidden_size init.constant_(self.fc_xh.bias[self.hidden_size : 2 * self.hidden_size], incr_bias) init.constant_(self.fc_hh.bias[self.hidden_size : 2 * self.hidden_size], incr_bias)
Example #20
Source File: mobilenetv2.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #21
Source File: seresnet_cifar.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #22
Source File: ibnresnet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #23
Source File: squeezenet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): if 'final_conv' in name: init.normal_(module.weight, mean=0.0, std=0.01) else: init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #24
Source File: resnext.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #25
Source File: sknet.py From imgclsmob with MIT License | 5 votes |
def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0)
Example #26
Source File: common_utils.py From conditional-motion-propagation with MIT License | 5 votes |
def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function <init_func>
Example #27
Source File: __init__.py From sunets with MIT License | 5 votes |
def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias.data is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): if m.bias.data is not None: init.constant_(m.bias, 0)
Example #28
Source File: pix2pix.py From ncsn with GNU General Public License v3.0 | 5 votes |
def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find( 'BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function <init_func>
Example #29
Source File: networks.py From viton-gan with MIT License | 5 votes |
def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('Linear') != -1: init.normal(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, 0.02) init.constant_(m.bias.data, 0.0)
Example #30
Source File: utils.py From BigGAN-pytorch with Apache License 2.0 | 5 votes |
def weights_init(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv2d') != -1: init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.0) elif classname.find('Linear') != -1: init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.0)