Python torch.nn.init.uniform_() Examples
The following are 30
code examples of torch.nn.init.uniform_().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn.init
, or try the search function
.
Example #1
Source File: linear.py From nsf with MIT License | 6 votes |
def __init__(self, features, orthogonal_initialization=True, using_cache=False): """Constructor. Args: features: int, number of input features. orthogonal_initialization: bool, if True initialize weights to be a random orthogonal matrix. Raises: TypeError: if `features` is not a positive integer. """ super().__init__(features, using_cache) if orthogonal_initialization: self._weight = nn.Parameter(utils.random_orthogonal(features)) else: self._weight = nn.Parameter(torch.empty(features, features)) stdv = 1.0 / np.sqrt(features) init.uniform_(self._weight, -stdv, stdv)
Example #2
Source File: config.py From pcl.pytorch with MIT License | 6 votes |
def assert_and_infer_cfg(make_immutable=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.VGG.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True)
Example #3
Source File: copy_summ.py From fast_abs_rl with MIT License | 5 votes |
def __init__(self, context_dim, state_dim, input_dim, bias=True): super().__init__() self._v_c = nn.Parameter(torch.Tensor(context_dim)) self._v_s = nn.Parameter(torch.Tensor(state_dim)) self._v_i = nn.Parameter(torch.Tensor(input_dim)) init.uniform_(self._v_c, -INIT, INIT) init.uniform_(self._v_s, -INIT, INIT) init.uniform_(self._v_i, -INIT, INIT) if bias: self._b = nn.Parameter(torch.zeros(1)) else: self.register_parameter(None, '_b')
Example #4
Source File: condbatchnorm.py From rGAN with MIT License | 5 votes |
def reset_parameters(self): self.reset_running_stats() if self.affine: init.uniform_(self.weight) init.zeros_(self.bias)
Example #5
Source File: Metapath2vec.py From OpenHINE with MIT License | 5 votes |
def __init__(self, emb_size, emb_dimension): super(SkipGramModel, self).__init__() self.emb_size = emb_size self.emb_dimension = emb_dimension self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) initrange = 1.0 / self.emb_dimension init.uniform_(self.u_embeddings.weight.data, -initrange, initrange) init.constant_(self.v_embeddings.weight.data, 0)
Example #6
Source File: manifold_layers.py From pvae with MIT License | 5 votes |
def reset_parameters(self): init.kaiming_normal_(self._weight, a=math.sqrt(5)) fan_in, _ = init._calculate_fan_in_and_fan_out(self._weight) bound = 4 / math.sqrt(fan_in) init.uniform_(self._bias, -bound, bound) if self.over_param: with torch.no_grad(): self._bias.set_(self.manifold.expmap0(self._bias))
Example #7
Source File: nn.py From hyperbolic-image-embeddings with MIT License | 5 votes |
def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound)
Example #8
Source File: simple_net.py From machina with MIT License | 5 votes |
def mini_weight_init(m): if m.__class__.__name__ == 'Linear': m.weight.data.copy_(uniform_(m.weight.data, -3e-3, 3e-3)) m.bias.data.fill_(0)
Example #9
Source File: simple_net.py From machina with MIT License | 5 votes |
def mini_weight_init(m): if m.__class__.__name__ == 'Linear': m.weight.data.copy_(uniform_(m.weight.data, -3e-3, 3e-3)) m.bias.data.fill_(0)
Example #10
Source File: simple_net.py From machina with MIT License | 5 votes |
def mini_weight_init(m): if m.__class__.__name__ == 'Linear': m.weight.data.copy_(uniform_(m.weight.data, -3e-3, 3e-3)) m.bias.data.fill_(0)
Example #11
Source File: init.py From DIoU-pytorch-detectron with GNU General Public License v3.0 | 5 votes |
def XavierFill(tensor): """Caffe2 XavierFill Implementation""" size = reduce(operator.mul, tensor.shape, 1) fan_in = size / tensor.shape[0] scale = math.sqrt(3 / fan_in) return init.uniform_(tensor, -scale, scale)
Example #12
Source File: config.py From DIoU-pytorch-detectron with GNU General Public License v3.0 | 5 votes |
def assert_and_infer_cfg(make_immutable=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN: __C.RPN.RPN_ON = True if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON: __C.TEST.PRECOMPUTED_PROPOSALS = False if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS: __C.MODEL.SHARE_RES5 = True if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True)
Example #13
Source File: utils.py From training with Apache License 2.0 | 5 votes |
def init_lstm_(lstm, init_weight=0.1): """ Initializes weights of LSTM layer. Weights and biases are initialized with uniform(-init_weight, init_weight) distribution. :param lstm: instance of torch.nn.LSTM :param init_weight: range for the uniform initializer """ # Initialize hidden-hidden weights init.uniform_(lstm.weight_hh_l0.data, -init_weight, init_weight) # Initialize input-hidden weights: init.uniform_(lstm.weight_ih_l0.data, -init_weight, init_weight) # Initialize bias. PyTorch LSTM has two biases, one for input-hidden GEMM # and the other for hidden-hidden GEMM. Here input-hidden bias is # initialized with uniform distribution and hidden-hidden bias is # initialized with zeros. init.uniform_(lstm.bias_ih_l0.data, -init_weight, init_weight) init.zeros_(lstm.bias_hh_l0.data) if lstm.bidirectional: init.uniform_(lstm.weight_hh_l0_reverse.data, -init_weight, init_weight) init.uniform_(lstm.weight_ih_l0_reverse.data, -init_weight, init_weight) init.uniform_(lstm.bias_ih_l0_reverse.data, -init_weight, init_weight) init.zeros_(lstm.bias_hh_l0_reverse.data)
Example #14
Source File: config.py From detectron-self-train with MIT License | 5 votes |
def assert_and_infer_cfg(make_immutable=False): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN: __C.RPN.RPN_ON = True if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON: __C.TEST.PRECOMPUTED_PROPOSALS = False if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS: __C.MODEL.SHARE_RES5 = True if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True)
Example #15
Source File: config.py From PMFNet with MIT License | 5 votes |
def assert_and_infer_cfg(make_immutable=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN: __C.RPN.RPN_ON = True if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON: __C.TEST.PRECOMPUTED_PROPOSALS = False if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS: __C.MODEL.SHARE_RES5 = True if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True)
Example #16
Source File: init.py From PMFNet with MIT License | 5 votes |
def XavierFill(tensor): """Caffe2 XavierFill Implementation""" size = reduce(operator.mul, tensor.shape, 1) fan_in = size / tensor.shape[0] scale = math.sqrt(3 / fan_in) return init.uniform_(tensor, -scale, scale)
Example #17
Source File: batchnorm_reimpl.py From RMI with MIT License | 5 votes |
def reset_parameters(self): self.reset_running_stats() init.uniform_(self.weight) init.zeros_(self.bias)
Example #18
Source File: batchnorm_reimpl.py From CAG_UDA with MIT License | 5 votes |
def reset_parameters(self): self.reset_running_stats() init.uniform_(self.weight) init.zeros_(self.bias)
Example #19
Source File: extract.py From fast_abs_rl with MIT License | 5 votes |
def __init__(self, input_dim, n_hidden, n_layer, dropout, n_hop): super().__init__() self._init_h = nn.Parameter(torch.Tensor(n_layer, n_hidden)) self._init_c = nn.Parameter(torch.Tensor(n_layer, n_hidden)) self._init_i = nn.Parameter(torch.Tensor(input_dim)) init.uniform_(self._init_h, -INI, INI) init.uniform_(self._init_c, -INI, INI) init.uniform_(self._init_i, -0.1, 0.1) self._lstm = nn.LSTM( input_dim, n_hidden, n_layer, bidirectional=False, dropout=dropout ) self._lstm_cell = None # attention parameters self._attn_wm = nn.Parameter(torch.Tensor(input_dim, n_hidden)) self._attn_wq = nn.Parameter(torch.Tensor(n_hidden, n_hidden)) self._attn_v = nn.Parameter(torch.Tensor(n_hidden)) init.xavier_normal_(self._attn_wm) init.xavier_normal_(self._attn_wq) init.uniform_(self._attn_v, -INI, INI) # hop parameters self._hop_wm = nn.Parameter(torch.Tensor(input_dim, n_hidden)) self._hop_wq = nn.Parameter(torch.Tensor(n_hidden, n_hidden)) self._hop_v = nn.Parameter(torch.Tensor(n_hidden)) init.xavier_normal_(self._hop_wm) init.xavier_normal_(self._hop_wq) init.uniform_(self._hop_v, -INI, INI) self._n_hop = n_hop
Example #20
Source File: extract.py From fast_abs_rl with MIT License | 5 votes |
def __init__(self, input_dim, n_hidden, n_layer, dropout, bidirectional): super().__init__() self._init_h = nn.Parameter( torch.Tensor(n_layer*(2 if bidirectional else 1), n_hidden)) self._init_c = nn.Parameter( torch.Tensor(n_layer*(2 if bidirectional else 1), n_hidden)) init.uniform_(self._init_h, -INI, INI) init.uniform_(self._init_c, -INI, INI) self._lstm = nn.LSTM(input_dim, n_hidden, n_layer, dropout=dropout, bidirectional=bidirectional)
Example #21
Source File: rl.py From fast_abs_rl with MIT License | 5 votes |
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if args: ptr_net = args[0] else: ptr_net = kwargs['ptr_net'] assert isinstance(ptr_net, LSTMPointerNet) self._stop = nn.Parameter( torch.Tensor(self._lstm_cell.input_size)) init.uniform_(self._stop, -INI, INI)
Example #22
Source File: config.py From PANet with MIT License | 5 votes |
def assert_and_infer_cfg(make_immutable=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN: __C.RPN.RPN_ON = True if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON: __C.TEST.PRECOMPUTED_PROPOSALS = False if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS: __C.MODEL.SHARE_RES5 = True if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True)
Example #23
Source File: init.py From PANet with MIT License | 5 votes |
def XavierFill(tensor): """Caffe2 XavierFill Implementation""" size = reduce(operator.mul, tensor.shape, 1) fan_in = size / tensor.shape[0] scale = math.sqrt(3 / fan_in) return init.uniform_(tensor, -scale, scale)
Example #24
Source File: flows.py From normalizing-flows with MIT License | 5 votes |
def reset_parameters(self): init.uniform_(self.init_param, - 1 / 2, 1 / 2)
Example #25
Source File: flows.py From normalizing-flows with MIT License | 5 votes |
def reset_parameters(self): init.uniform_(self.initial_param, -math.sqrt(0.5), math.sqrt(0.5))
Example #26
Source File: flows.py From normalizing-flows with MIT License | 5 votes |
def reset_parameters(dim): init.uniform_(self.z0, -math.sqrt(1/dim), math.sqrt(1/dim)) init.uniform_(self.log_alpha, -math.sqrt(1/dim), math.sqrt(1/dim)) init.uniform_(self.beta, -math.sqrt(1/dim), math.sqrt(1/dim))
Example #27
Source File: flows.py From normalizing-flows with MIT License | 5 votes |
def reset_parameters(self, dim): init.uniform_(self.w, -math.sqrt(1/dim), math.sqrt(1/dim)) init.uniform_(self.u, -math.sqrt(1/dim), math.sqrt(1/dim)) init.uniform_(self.b, -math.sqrt(1/dim), math.sqrt(1/dim))
Example #28
Source File: FlowNetFusion.py From RCRNet-Pytorch with MIT License | 5 votes |
def __init__(self,args, batchNorm=True): super(FlowNetFusion,self).__init__() self.batchNorm = batchNorm self.conv0 = conv(self.batchNorm, 11, 64) self.conv1 = conv(self.batchNorm, 64, 64, stride=2) self.conv1_1 = conv(self.batchNorm, 64, 128) self.conv2 = conv(self.batchNorm, 128, 128, stride=2) self.conv2_1 = conv(self.batchNorm, 128, 128) self.deconv1 = deconv(128,32) self.deconv0 = deconv(162,16) self.inter_conv1 = i_conv(self.batchNorm, 162, 32) self.inter_conv0 = i_conv(self.batchNorm, 82, 16) self.predict_flow2 = predict_flow(128) self.predict_flow1 = predict_flow(32) self.predict_flow0 = predict_flow(16) self.upsampled_flow2_to_1 = nn.ConvTranspose2d(2, 2, 4, 2, 1) self.upsampled_flow1_to_0 = nn.ConvTranspose2d(2, 2, 4, 2, 1) for m in self.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: init.uniform_(m.bias) init.xavier_uniform_(m.weight) if isinstance(m, nn.ConvTranspose2d): if m.bias is not None: init.uniform_(m.bias) init.xavier_uniform_(m.weight) # init_deconv_bilinear(m.weight)
Example #29
Source File: batchnorm_reimpl.py From pytorch_connectomics with MIT License | 5 votes |
def reset_parameters(self): self.reset_running_stats() init.uniform_(self.weight) init.zeros_(self.bias)
Example #30
Source File: batchnorm_reimpl.py From fast-reid with Apache License 2.0 | 5 votes |
def reset_parameters(self): self.reset_running_stats() init.uniform_(self.weight) init.zeros_(self.bias)