Python predictor.Predictor() Examples
The following are 4
code examples of predictor.Predictor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
predictor
, or try the search function
.
Example #1
Source File: exec.py From RegRCNN with Apache License 2.0 | 6 votes |
def test(cf, logger, max_fold=None): """performs testing for a given fold (or held out set). saves stats in evaluator. """ logger.time("test_fold") logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir)) net = model.net(cf, logger).cuda() batch_gen = data_loader.get_test_generator(cf, logger) test_predictor = Predictor(cf, net, logger, mode='test') test_results_list = test_predictor.predict_test_set(batch_gen, return_results = not hasattr( cf, "eval_test_separately") or not cf.eval_test_separately) if test_results_list is not None: test_evaluator = Evaluator(cf, logger, mode='test') test_evaluator.evaluate_predictions(test_results_list) test_evaluator.score_test_df(max_fold=max_fold) logger.info('Testing of fold {} took {}.\n'.format(cf.fold, logger.get_time("test_fold", reset=True, format="hms")))
Example #2
Source File: exec.py From medicaldetectiontoolkit with Apache License 2.0 | 5 votes |
def test(logger): """ perform testing for a given fold (or hold out set). save stats in evaluator. """ logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir)) net = model.net(cf, logger).cuda() test_predictor = Predictor(cf, net, logger, mode='test') test_evaluator = Evaluator(cf, logger, mode='test') batch_gen = data_loader.get_test_generator(cf, logger) test_results_list = test_predictor.predict_test_set(batch_gen, return_results=True) test_evaluator.evaluate_predictions(test_results_list) test_evaluator.score_test_df()
Example #3
Source File: main.py From Describing_a_Knowledge_Base with MIT License | 5 votes |
def train_epoches(t_dataset, v_dataset, model, n_epochs, teacher_forcing_ratio): eval_f = Evaluate_test() best_dev = 0 train_loader = t_dataset.corpus len_batch = len(train_loader) epoch_examples_total = t_dataset.len for epoch in range(1, n_epochs + 1): model.train(True) torch.set_grad_enabled(True) epoch_loss = 0 for batch_idx in range(len_batch): loss, num_examples = train_batch(t_dataset, batch_idx, model, teacher_forcing_ratio) epoch_loss += loss * num_examples sys.stdout.write( '%d batches processed. current batch loss: %f\r' % (batch_idx, loss) ) sys.stdout.flush() epoch_loss /= epoch_examples_total log_msg = "Finished epoch %d with losses: %.4f" % (epoch, epoch_loss) print(log_msg) predictor = Predictor(model, v_dataset.vocab, args.cuda) print("Start Evaluating") cand, ref = predictor.preeval_batch(v_dataset) print('Result:') print('ref: ', ref[1][0]) print('cand: ', cand[1]) final_scores = eval_f.evaluate(live=True, cand=cand, ref=ref) epoch_score = 2*final_scores['ROUGE_L']*final_scores['Bleu_4']/(final_scores['Bleu_4']+ final_scores['ROUGE_L']) if epoch_score > best_dev: torch.save(model.state_dict(), args.save) print("model saved") best_dev = epoch_score
Example #4
Source File: tester.py From TuSimple-DUC with Apache License 2.0 | 5 votes |
def __init__(self, config): self.config = config # model self.model_dir = config.get('model', 'model_dir') self.model_prefix = config.get('model', 'model_prefix') self.model_epoch = config.getint('model', 'model_epoch') self.label_num = config.getint('model', 'label_num') self.ctx = mx.gpu(config.getint('model', 'gpu')) # data self.ds_rate = int(config.get('data', 'ds_rate')) self.cell_width = int(config.get('data', 'cell_width')) self.test_shape = [int(f) for f in config.get('data', 'test_shape').split(',')] self.result_shape = [int(f) for f in config.get('data', 'result_shape').split(',')] self.rgb_mean = [float(f) for f in config.get('data', 'rgb_mean').split(',')] # rescale for test self.test_scales = [float(f) for f in config.get('data', 'test_scales').split(',')] self.cell_shapes = [[math.ceil(l * s / self.ds_rate)*self.ds_rate for l in self.test_shape] for s in self.test_scales] self.modules = [] for i, test_scale in enumerate(self.test_scales): predictor = mx.module.Module.load( prefix=os.path.join(self.model_dir, self.model_prefix), epoch=self.model_epoch, context=self.ctx) data_shape = (1, 3, int(self.cell_shapes[i][0]), int(self.cell_shapes[i][1])) predictor.bind(data_shapes=[('data', data_shape)], for_training=False) self.modules.append(predictor) self.predictor = Predictor( modules=self.modules, label_num=self.label_num, ds_rate=self.ds_rate, cell_width=self.cell_width, result_shape=self.result_shape, test_scales=self.test_scales )