Python onnx.TensorProto.FLOAT Examples
The following are 30
code examples of onnx.TensorProto.FLOAT().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
onnx.TensorProto
, or try the search function
.
Example #1
Source File: onnx_import_test.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def test_broadcast(): """Test for broadcasting in onnx operators.""" input1 = np.random.rand(1, 3, 4, 5).astype("float32") input2 = np.random.rand(1, 5).astype("float32") inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)), helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))] outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))] nodes = [helper.make_node("Add", ["input1", "input2"], ["output"])] graph = helper.make_graph(nodes, "bcast_test", inputs, outputs) bcast_model = helper.make_model(graph) bkd_rep = mxnet_backend.prepare(bcast_model) numpy_op = input1 + input2 output = bkd_rep.run([input1, input2]) npt.assert_almost_equal(output[0], numpy_op)
Example #2
Source File: links.py From chainer-compiler with MIT License | 7 votes |
def __init__(self, ch): super(Link_Convolution2D, self).__init__(L.Convolution2D(None, None)) # code.InteractiveConsole({'ch': ch}).interact() self.ksize = size2d(ch.ksize) self.stride = size2d(ch.stride) ps = size2d(ch.pad) self.pads = ps + ps if not (ch.b is None): # nobias = True の場合 self.M = ch.b.shape[0] self.b = helper.make_tensor_value_info( '/b', TensorProto.FLOAT, [self.M]) else: self.M = "TODO" self.b = None self.W = helper.make_tensor_value_info( '/W', TensorProto.FLOAT, [self.M, 'channel_size'] + list(self.ksize))
Example #3
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs): indata = np.random.uniform(size=(2, 4, 5, 6)).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ['in'], ['out'], **kwargs) graph = helper.make_graph([y], opname+'_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, dtype) np.testing.assert_allclose(outdata, tvm_out)
Example #4
Source File: links.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, ch): super(Link_BatchNormalization, self).__init__( L.BatchNormalization(1)) self.n_out = ch.beta.shape[0] self.scale = helper.make_tensor_value_info( '/gamma', TensorProto.FLOAT, [self.n_out]) self.B = helper.make_tensor_value_info( '/beta', TensorProto.FLOAT, [self.n_out]) self.mean = helper.make_tensor_value_info( '/avg_mean', TensorProto.FLOAT, [self.n_out]) self.var = helper.make_tensor_value_info( '/avg_var', TensorProto.FLOAT, [self.n_out]) self.eps = ch.eps self.momentum = ch.decay
Example #5
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def _make_input_tensor(self, layer_name, layer_dict): """Create an ONNX input tensor from a 'net' layer and store the batch size. Keyword arguments: layer_name -- the layer's name (also the corresponding key in layer_configs) layer_dict -- a layer parameter dictionary (one element of layer_configs) """ batch_size = layer_dict['batch'] channels = layer_dict['channels'] height = layer_dict['height'] width = layer_dict['width'] self.batch_size = batch_size input_tensor = helper.make_tensor_value_info( str(layer_name), TensorProto.FLOAT, [ batch_size, channels, height, width]) self.input_tensor = input_tensor return layer_name, channels
Example #6
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def _create_param_tensors(self, conv_params, param_category, suffix): """Creates the initializers with weights from the weights file together with the input tensors. Keyword arguments: conv_params -- a ConvParams object param_category -- the category of parameters to be created ('bn' or 'conv') suffix -- a string determining the sub-type of above param_category (e.g., 'weights' or 'bias') """ param_name, param_data, param_data_shape = self._load_one_param_type( conv_params, param_category, suffix) initializer_tensor = helper.make_tensor( param_name, TensorProto.FLOAT, param_data_shape, param_data) input_tensor = helper.make_tensor_value_info( param_name, TensorProto.FLOAT, param_data_shape) return initializer_tensor, input_tensor
Example #7
Source File: _transformers.py From onnx-coreml with MIT License | 6 votes |
def __call__(self, graph): # type: (Graph) -> Graph input_names = [str(input_[0]) for input_ in graph.inputs] output_names = [str(output_[0]) for output_ in graph.outputs] for node in graph.nodes: if str(node.op_type) == 'LSTM': input_h = node.inputs[5] if len(node.inputs) > 5 else node.inputs[0] + '_h_input' input_c = node.inputs[6] if len(node.inputs) > 6 else node.inputs[0] + '_c_input' output_h = node.outputs[1] if len(node.outputs) > 1 else node.outputs[0] + '_h_output' output_c = node.outputs[2] if len(node.outputs) > 2 else node.outputs[0] + '_c_output' h = node.attrs["hidden_size"] for input_ in [str(input_h), str(input_c)]: if input_ not in input_names: graph.inputs.append(tuple((input_, TensorProto.FLOAT, (h,)))) #type: ignore if input_ not in graph.blob_to_op_type: graph.blob_to_op_type[input_] = ['LSTM'] for output_ in [str(output_h), str(output_c)]: if output_ not in output_names: graph.outputs.append(tuple((output_, TensorProto.FLOAT, (h,)))) #type: ignore graph.blob_from_op_type[output_] = 'LSTM' return graph
Example #8
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def load_resize_scales(self, resize_params): """Returns the initializers with the value of the scale input tensor given by resize_params. Keyword argument: resize_params -- a ResizeParams object """ initializer = list() inputs = list() name = resize_params.generate_param_name() shape = resize_params.value.shape data = resize_params.value scale_init = helper.make_tensor( name, TensorProto.FLOAT, shape, data) scale_input = helper.make_tensor_value_info( name, TensorProto.FLOAT, shape) initializer.append(scale_init) inputs.append(scale_input) return initializer, inputs
Example #9
Source File: onnx_converters.py From chainer-compiler with MIT License | 6 votes |
def generate_graph(self, name: 'str', isMain=False): input_tensor_and_initializer = self.input_tensor.copy() # TODO(take-cheeze): Remove this workaround for i in input_tensor_and_initializer: t = i.type.tensor_type if t is not None and t.elem_type is TensorProto.UNDEFINED: t.elem_type = TensorProto.FLOAT initializers = [] # add initializers if isMain: for v in self.generator.initializers.values(): initializers.append(v.tensor) if v.tensor_value in self.input_tensor: continue input_tensor_and_initializer.append(v.tensor_value) return oh.make_graph(self.nodes, name, input_tensor_and_initializer, self.output_tensor, initializer=initializers)
Example #10
Source File: custom_layers_test.py From onnx-coreml with MIT License | 6 votes |
def _make_model_acos_exp_topk(): # type: (...) -> ModelProto ''' make a very simple model for testing: input->clip->exp->topk->2 outputs ''' inputs = [('input0', (10,), TensorProto.FLOAT), ('K', (1,), TensorProto.INT64)] outputs = [('output_values', (3,), TensorProto.FLOAT), ('output_indices', (3,), TensorProto.INT64)] acos = helper.make_node("Acos", inputs=[inputs[0][0]], outputs=['acos_out']) exp = helper.make_node("Exp", inputs=[acos.output[0]], outputs=['exp_out']) topk = helper.make_node("TopK", inputs=[exp.output[0], inputs[1][0]], outputs=[outputs[0][0], outputs[1][0]], axis=0) return _onnx_create_model([acos, exp, topk], inputs, outputs)
Example #11
Source File: test_model.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_relu_node_inplace(self): X = np.random.randn(3, 2).astype(np.float32) Y_ref = np.clip(X, 0, np.inf) node_def = helper.make_node("Relu", ["X"], ["X1"]) graph_def = helper.make_graph( [node_def], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])], outputs=[ helper.make_tensor_value_info("X1", TensorProto.FLOAT, [3, 2]) ]) tf_rep = prepare(helper.make_model(graph_def)) output = tf_rep.run({"X": X}) np.testing.assert_almost_equal(output.X1, Y_ref)
Example #12
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_eye_like(self): if legacy_opset_pre_ver(9): raise unittest.SkipTest("ONNX version {} doesn't support EyeLike.".format( defs.onnx_opset_version())) shape = [6, 10] off_diagonal_offset = -3 x = self._get_rnd_int(0, 100, shape=shape) y = np.eye(shape[0], shape[1], k=off_diagonal_offset, dtype=np.float32) node_def = helper.make_node("EyeLike", ["x"], ["y"], dtype=TensorProto.FLOAT, k=off_diagonal_offset) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("x", TensorProto.INT32, [None, None]) ], outputs=[ helper.make_tensor_value_info("y", TensorProto.FLOAT, [None, None]) ]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"x": x}) np.testing.assert_equal(output["y"], y)
Example #13
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_power_iteration(x_shape, y_shape): if isinstance(y_shape, int): y_shape = [y_shape] x = np.random.uniform(size=x_shape).astype(np.float32) y = np.random.uniform(size=y_shape).astype(np.float32) np_res = np.power(x, y).astype(np.float32) res = helper.make_node("Pow", ['x', 'y'], ['out']) graph = helper.make_graph([res], 'power_test', inputs = [helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(np_res.shape))]) model = helper.make_model(graph, producer_name='power_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape) np.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5)
Example #14
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_squeeze(): in_shape = (1, 3, 1, 3, 1, 1) out_shape = (3, 3) y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5]) graph = helper.make_graph([y], 'squeeze_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_shape, tvm_out.shape)
Example #15
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_unsqueeze(): in_shape = (3, 3) axis = (0, 3, 4) out_shape = (1, 3, 3, 1, 1) y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis)) graph = helper.make_graph([y], 'squeeze_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_shape, tvm_out.shape)
Example #16
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_slice_iteration(indata, outdata, starts, ends, axes=None): if axes: y = helper.make_node("Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends) else: y = helper.make_node("Slice", ['in'], ['out'], starts=starts, ends=ends) graph = helper.make_graph([y], 'slice_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name='slice_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32') np.testing.assert_allclose(outdata, tvm_out)
Example #17
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_flatten(self): shape = [2, 3, 4] x = self._get_rnd_float32(shape=shape) axis = 1 node_def = helper.make_node("Flatten", ["X"], ["Y"], axis=axis) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [None, None, None]) ], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, [None])]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"X": x}) new_shape = (np.prod(shape[0:axis]).astype(int), -1) np.testing.assert_almost_equal(output["Y"], np.reshape(x, new_shape))
Example #18
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_matmul(): a_shape = (4, 3) b_shape = (3, 4) a_array = np.random.uniform(size=a_shape).astype('float32') b_array = np.random.uniform(size=b_shape).astype('float32') out_np = np.matmul(a_array, b_array) mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph([mul_node], "matmul_test", inputs = [helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='matmul_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_array, b_array], target, ctx, out_np.shape) np.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
Example #19
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_upsample_nearest(): scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in'], ['out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.upsampling_python(in_array, scale, "NCHW") graph = helper.make_graph([y], 'upsample_nearest_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='upsample_nearest_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_array, tvm_out)
Example #20
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_softmax(inshape, axis): opname = 'Softmax' indata = np.random.uniform(size=inshape).astype(np.float32) outshape = inshape outdata = topi.testing.softmax_python(indata) if isinstance(axis, int): y = helper.make_node(opname, ['in'], ['out'], axis = axis) elif axis is None: y = helper.make_node(opname, ['in'], ['out']) graph = helper.make_graph([y], opname+'_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outshape, 'float32') np.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
Example #21
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def verify_hardsigmoid(input_dim, alpha, beta): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.clip(a_np1 * alpha + beta, 0, 1) hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], ["out"], alpha=alpha, beta=beta) graph = helper.make_graph([hardsigmoid_node], "HardSigmoid_test", inputs = [helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='HardSigmoid_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape) np.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
Example #22
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_nop_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_Y"], ["_Y2"], perm=[0, 1])], [(TensorProto.FLOAT, (2, 3), "Y")], [(TensorProto.FLOAT, (2, 3), "Y2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (2, 3))]) optimized_model = self._optimized(graph, ["eliminate_nop_transpose"]) def check_transpose(node): # type: (NodeProto) -> None assert node.op_type != "Transpose" self._visit_all_nodes_recursive(optimized_model.graph, check_transpose) # Use of the output from the Transpose node in the main graph should # have been replaced with the input to the identity node assert len(optimized_model.graph.output) == 2 assert optimized_model.graph.output[0].name == "X" # Use of the output from the Transpose node in the loop graph should # have been replaced with the input to that identity node assert len(optimized_model.graph.node[2].attribute[0].g.output) == 2 assert optimized_model.graph.node[2].attribute[0].g.output[1].name == "_Y"
Example #23
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_eliminate_unused_initializer_no_eliminate_output(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["Z"]) graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(2, 3), vals=np.random.randn(2, 3).astype(np.float32).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["eliminate_unused_initializer"]) assert len(list(optimized_model.graph.initializer)) == 1 assert "Z" in [o.name for o in optimized_model.graph.output]
Example #24
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2]), helper.make_node("Transpose", ["Y"], ["Z"], perm=[2, 0, 1]), helper.make_node("Transpose", ["Z"], ["A"], perm=[2, 0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_X"], ["_Y2"], perm=[1, 0, 2]), helper.make_node("Transpose", ["_Y2"], ["_Y3"], perm=[2, 0, 1]), helper.make_node("Transpose", ["_Y3"], ["_Y4"], perm=[2, 0, 1])], [(TensorProto.FLOAT, (2, 3), "X")], [(TensorProto.FLOAT, (2, 3), "Y4")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (4, 3, 2)), helper.make_tensor_value_info("Y4", TensorProto.FLOAT, (4, 3, 2))]) optimized_model = self._optimized(graph, ["fuse_consecutive_transposes"]) # Transpose, Constant (trip count), Constant (cond), Loop assert len(list(optimized_model.graph.node)) == 4 # Transpose assert len(optimized_model.graph.node[3].attribute[0].g.node) == 1
Example #25
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_use_weight_shape_with_tile(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 1, 1))], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 3 assert len(optimized_model.graph.value_info) == 1 assert optimized_model.graph.value_info[0].type.tensor_type.elem_type == TensorProto.INT64 assert len(optimized_model.graph.value_info[0].type.tensor_type.shape.dim) == 1 assert optimized_model.graph.node[0].op_type == 'Constant' assert optimized_model.graph.node[1].op_type == 'Tile' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z'
Example #26
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_use_conv_shape(self): # type: () -> None sub = helper.make_node("Sub", ["M", "N"], ["Y"]) conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [sub, conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("M", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("N", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 1, 1))], value_info=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1)) ], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(optimized_model.graph.node) == 3 assert optimized_model.graph.node[0].op_type == 'Sub' assert optimized_model.graph.node[1].op_type == 'Squeeze' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z' assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert len(optimized_model.graph.output[0].type.tensor_type.shape.dim) == 4
Example #27
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_squeeze_1d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (3,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 1, 3))], value_info=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1)), ] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add'
Example #28
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_squeeze_3d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (16, 3, 3))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 3, 3))], value_info=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1)), ] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add'
Example #29
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_squeeze_4d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 3, 3))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 3, 3))] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add'
Example #30
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_consecutive_squeezes(self): # type: () -> None nodes = [helper.make_node("Squeeze", ["X"], ["Y"], axes=[0, 4, 5]), helper.make_node("Squeeze", ["Y"], ["Z"], axes=[0, 3])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Squeeze", ["_X"], ["_Y"], axes=[0, 4, 5]), helper.make_node("Squeeze", ["_Y"], ["_Z2"], axes=[0, 3])], [(TensorProto.FLOAT, (1, 1, 2, 3, 1, 1, 1, 1, 8, 9), "X")], [(TensorProto.FLOAT, (2, 3, 1, 8, 9), "Z2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 1, 2, 3, 1, 1, 1, 1, 8, 9))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (2, 3, 1, 8, 9))]) optimized_model = self._optimized(graph, ["fuse_consecutive_squeezes"]) # Squeeze, Constant (trip count), Constant (cond), Loop assert optimized_model.graph.node[0].op_type == "Squeeze" assert list(optimized_model.graph.node[0].attribute[0].ints) == [0, 1, 4, 5, 6] assert len(list(optimized_model.graph.node)) == 4