Python nets.inception_resnet_v2.inception_resnet_v2() Examples
The following are 5
code examples of nets.inception_resnet_v2.inception_resnet_v2().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.inception_resnet_v2
, or try the search function
.
Example #1
Source File: target_attack.py From Targeted-Adversarial-Attack with Apache License 2.0 | 5 votes |
def graph_small(x, target_class_input, i, x_max, x_min, grad): eps = 2.0 * FLAGS.max_epsilon / 255.0 alpha = eps / 28 momentum = FLAGS.momentum num_classes = 1001 with slim.arg_scope(inception_v3.inception_v3_arg_scope()): logits_v3, end_points_v3 = inception_v3.inception_v3( x, num_classes=num_classes, is_training=False) with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()): logits_ensadv_res_v2, end_points_ensadv_res_v2 = inception_resnet_v2.inception_resnet_v2( x, num_classes=num_classes, is_training=False, scope='EnsAdvInceptionResnetV2') one_hot_target_class = tf.one_hot(target_class_input, num_classes) logits = (logits_v3 + 2 * logits_ensadv_res_v2) / 3 auxlogits = (end_points_v3['AuxLogits'] + 2 * end_points_ensadv_res_v2['AuxLogits']) / 3 cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class, logits, label_smoothing=0.0, weights=1.0) cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class, auxlogits, label_smoothing=0.0, weights=0.4) noise = tf.gradients(cross_entropy, x)[0] noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1]) noise = momentum * grad + noise noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1]) x = x - alpha * tf.clip_by_value(tf.round(noise), -2, 2) x = tf.clip_by_value(x, x_min, x_max) i = tf.add(i, 1) return x, target_class_input, i, x_max, x_min, noise
Example #2
Source File: model.py From ICPR_TextDection with GNU General Public License v3.0 | 4 votes |
def model(images, weight_decay=1e-5, is_training=True): images = mean_image_subtraction(images) with slim.arg_scope(inception_arg_scope(weight_decay=weight_decay)): logits, end_points = inception_resnet_v2(images, num_classes=None, is_training=is_training) for key in end_points.keys(): print(key, end_points[key]) return logits, end_points # print(end_points.keys()) # with tf.variable_scope('feature_fusion', values=[end_points.values()]): # batch_norm_params = { # 'decay': 0.997, # 'epsilon': 1e-5, # 'scale': True, # 'is_training': is_training # } # with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, # normalizer_params=batch_norm_params, weights_regularizer=slim.l2_regularizer(weight_decay)): # f = [end_points['Scale-5'], # 16 # end_points['Scale-4'], # 32 # end_points['Scale-3'], # 64 # end_points['Scale-2'], # 128 # end_points['Scale-1']] # 256 # g = [None, None, None, None, None] # h = [None, None, None, None, None] # num_outputs = [None, 1024, 128, 64, 32] # for i in range(5): # if i == 0: # h[i] = f[i] # else: # # 相当于一个融合,减少维度的过程,kernel size等于1 # c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs=num_outputs[i], kernel_size=1) # h[i] = slim.conv2d(c1_1, num_outputs=num_outputs[i], kernel_size=3) # if i <= 3: # g[i] = unpool(h[i]) # # g[i] = slim.conv2d(g[i], num_outputs[i + 1], 1) # # g[i] = slim.conv2d(g[i], num_outputs[i + 1], 3) # else: # g[i] = slim.conv2d(h[i], num_outputs[i], 3) # print("Shape of f_{} {}, h_{} {}, g_{} {}".format(i, f[i].shape, i, h[i].shape, i, g[i].shape)) # F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) # if FLAGS.geometry == 'RBOX': # # 4 channel of axis aligned bbox and 1 channel rotation angle # print 'RBOX' # geo_map = slim.conv2d(g[4], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * FLAGS.text_scale # angle_map = (slim.conv2d(g[4], 1, 1, activation_fn=tf.nn.sigmoid, # normalizer_fn=None) - 0.5) * np.pi / 2 # angle is between [-45, 45] # F_geometry = tf.concat([geo_map, angle_map], axis=-1) # else: # # LD modify # # concated_score_map = tf.concat([F_score, g[3]], axis=-1) # # F_geometry = slim.conv2d(g[4], 8, 1, activation_fn=parametric_relu, # # normalizer_fn=None) * FLAGS.text_scale # assert False # return F_score, F_geometry
Example #3
Source File: target_attack.py From Targeted-Adversarial-Attack with Apache License 2.0 | 4 votes |
def graph_large(x, target_class_input, i, x_max, x_min, grad): eps = 2.0 * FLAGS.max_epsilon / 255.0 alpha = eps / 12 momentum = FLAGS.momentum num_classes = 1001 with slim.arg_scope(inception_v3.inception_v3_arg_scope()): logits_v3, end_points_v3 = inception_v3.inception_v3( x, num_classes=num_classes, is_training=False) with slim.arg_scope(inception_v3.inception_v3_arg_scope()): logits_adv_v3, end_points_adv_v3 = inception_v3.inception_v3( x, num_classes=num_classes, is_training=False, scope='AdvInceptionV3') with slim.arg_scope(inception_v3.inception_v3_arg_scope()): logits_ens3_adv_v3, end_points_ens3_adv_v3 = inception_v3.inception_v3( x, num_classes=num_classes, is_training=False, scope='Ens3AdvInceptionV3') with slim.arg_scope(inception_v3.inception_v3_arg_scope()): logits_ens4_adv_v3, end_points_ens4_adv_v3 = inception_v3.inception_v3( x, num_classes=num_classes, is_training=False, scope='Ens4AdvInceptionV3') with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()): logits_ensadv_res_v2, end_points_ensadv_res_v2 = inception_resnet_v2.inception_resnet_v2( x, num_classes=num_classes, is_training=False, scope='EnsAdvInceptionResnetV2') one_hot_target_class = tf.one_hot(target_class_input, num_classes) logits = (4 * logits_v3 + logits_adv_v3 + logits_ens3_adv_v3 + logits_ens4_adv_v3 + 4 * logits_ensadv_res_v2) / 11 auxlogits = (4 * end_points_v3['AuxLogits'] + end_points_adv_v3['AuxLogits'] + end_points_ens3_adv_v3['AuxLogits'] + end_points_ens4_adv_v3['AuxLogits'] + 4 * end_points_ensadv_res_v2['AuxLogits']) / 11 cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class, logits, label_smoothing=0.0, weights=1.0) cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class, auxlogits, label_smoothing=0.0, weights=0.4) noise = tf.gradients(cross_entropy, x)[0] noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1]) noise = momentum * grad + noise noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1]) x = x - alpha * tf.clip_by_value(tf.round(noise), -2, 2) x = tf.clip_by_value(x, x_min, x_max) i = tf.add(i, 1) return x, target_class_input, i, x_max, x_min, noise
Example #4
Source File: attack_iter.py From Translation-Invariant-Attacks with Apache License 2.0 | 4 votes |
def graph(x, y, i, x_max, x_min, grad): eps = 2.0 * FLAGS.max_epsilon / 255.0 num_iter = FLAGS.num_iter alpha = eps / num_iter momentum = FLAGS.momentum num_classes = 1001 # should keep original x here for output with slim.arg_scope(inception_v3.inception_v3_arg_scope()): logits_v3, end_points_v3 = inception_v3.inception_v3( input_diversity(x), num_classes=num_classes, is_training=False) with slim.arg_scope(inception_v4.inception_v4_arg_scope()): logits_v4, end_points_v4 = inception_v4.inception_v4( input_diversity(x), num_classes=num_classes, is_training=False) with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()): logits_res_v2, end_points_res_v2 = inception_resnet_v2.inception_resnet_v2( input_diversity(x), num_classes=num_classes, is_training=False, reuse=True) with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits_resnet, end_points_resnet = resnet_v2.resnet_v2_152( input_diversity(x), num_classes=num_classes, is_training=False) logits = (logits_v3 + logits_v4 + logits_res_v2 + logits_resnet) / 4 auxlogits = (end_points_v3['AuxLogits'] + end_points_v4['AuxLogits'] + end_points_res_v2['AuxLogits']) / 3 cross_entropy = tf.losses.softmax_cross_entropy(y, logits, label_smoothing=0.0, weights=1.0) cross_entropy += tf.losses.softmax_cross_entropy(y, auxlogits, label_smoothing=0.0, weights=0.4) noise = tf.gradients(cross_entropy, x)[0] noise = tf.nn.depthwise_conv2d(noise, stack_kernel, strides=[1, 1, 1, 1], padding='SAME') noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3], keep_dims=True) noise = momentum * grad + noise x = x + alpha * tf.sign(noise) x = tf.clip_by_value(x, x_min, x_max) i = tf.add(i, 1) return x, y, i, x_max, x_min, noise
Example #5
Source File: attack_iter.py From Translation-Invariant-Attacks with Apache License 2.0 | 4 votes |
def main(_): # Images for inception classifier are normalized to be in [-1, 1] interval, # eps is a difference between pixels so it should be in [0, 2] interval. # Renormalizing epsilon from [0, 255] to [0, 2]. eps = 2.0 * FLAGS.max_epsilon / 255.0 num_classes = 1001 batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3] tf.logging.set_verbosity(tf.logging.INFO) print(time.time() - start_time) with tf.Graph().as_default(): # Prepare graph x_input = tf.placeholder(tf.float32, shape=batch_shape) x_max = tf.clip_by_value(x_input + eps, -1.0, 1.0) x_min = tf.clip_by_value(x_input - eps, -1.0, 1.0) with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()): _, end_points = inception_resnet_v2.inception_resnet_v2( x_input, num_classes=num_classes, is_training=False) predicted_labels = tf.argmax(end_points['Predictions'], 1) y = tf.one_hot(predicted_labels, num_classes) i = tf.constant(0) grad = tf.zeros(shape=batch_shape) x_adv, _, _, _, _, _ = tf.while_loop(stop, graph, [x_input, y, i, x_max, x_min, grad]) # Run computation s1 = tf.train.Saver(slim.get_model_variables(scope='InceptionV3')) s5 = tf.train.Saver(slim.get_model_variables(scope='InceptionV4')) s6 = tf.train.Saver(slim.get_model_variables(scope='InceptionResnetV2')) s8 = tf.train.Saver(slim.get_model_variables(scope='resnet_v2')) with tf.Session() as sess: s1.restore(sess, FLAGS.checkpoint_path_inception_v3) s5.restore(sess, FLAGS.checkpoint_path_inception_v4) s6.restore(sess, FLAGS.checkpoint_path_inception_resnet_v2) s8.restore(sess, FLAGS.checkpoint_path_resnet) print(time.time() - start_time) for filenames, images in load_images(FLAGS.input_dir, batch_shape): adv_images = sess.run(x_adv, feed_dict={x_input: images}) save_images(adv_images, filenames, FLAGS.output_dir) print(time.time() - start_time)