Python torchvision.__version__() Examples
The following are 5
code examples of torchvision.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision
, or try the search function
.
Example #1
Source File: __init__.py From mlflow with Apache License 2.0 | 6 votes |
def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import torch import torchvision return _mlflow_conda_env( additional_conda_deps=[ "pytorch={}".format(torch.__version__), "torchvision={}".format(torchvision.__version__), ], additional_pip_deps=[ # We include CloudPickle in the default environment because # it's required by the default pickle module used by `save_model()` # and `log_model()`: `mlflow.pytorch.pickle_module`. "cloudpickle=={}".format(cloudpickle.__version__) ], additional_conda_channels=[ "pytorch", ])
Example #2
Source File: collect_env.py From mmdetection with Apache License 2.0 | 4 votes |
def collect_env(): """Collect the information of the running environments.""" env_info = {} env_info['sys.platform'] = sys.platform env_info['Python'] = sys.version.replace('\n', '') cuda_available = torch.cuda.is_available() env_info['CUDA available'] = cuda_available if cuda_available: from torch.utils.cpp_extension import CUDA_HOME env_info['CUDA_HOME'] = CUDA_HOME if CUDA_HOME is not None and osp.isdir(CUDA_HOME): try: nvcc = osp.join(CUDA_HOME, 'bin/nvcc') nvcc = subprocess.check_output( f'"{nvcc}" -V | tail -n1', shell=True) nvcc = nvcc.decode('utf-8').strip() except subprocess.SubprocessError: nvcc = 'Not Available' env_info['NVCC'] = nvcc devices = defaultdict(list) for k in range(torch.cuda.device_count()): devices[torch.cuda.get_device_name(k)].append(str(k)) for name, devids in devices.items(): env_info['GPU ' + ','.join(devids)] = name gcc = subprocess.check_output('gcc --version | head -n1', shell=True) gcc = gcc.decode('utf-8').strip() env_info['GCC'] = gcc env_info['PyTorch'] = torch.__version__ env_info['PyTorch compiling details'] = torch.__config__.show() env_info['TorchVision'] = torchvision.__version__ env_info['OpenCV'] = cv2.__version__ env_info['MMCV'] = mmcv.__version__ env_info['MMDetection'] = mmdet.__version__ from mmdet.ops import get_compiler_version, get_compiling_cuda_version env_info['MMDetection Compiler'] = get_compiler_version() env_info['MMDetection CUDA Compiler'] = get_compiling_cuda_version() return env_info
Example #3
Source File: prepare.py From AutoDL-Projects with MIT License | 4 votes |
def main(): save_path = Path(args.save) save_dir = save_path.parent name = args.name save_dir.mkdir(parents=True, exist_ok=True) assert not save_path.exists(), '{:} already exists'.format(save_path) print ('torchvision version : {:}'.format(torchvision.__version__)) if name == 'cifar10': dataset = dset.CIFAR10 (args.root, train=True) elif name == 'cifar100': dataset = dset.CIFAR100(args.root, train=True) elif name == 'imagenet-1k': dataset = dset.ImageFolder(osp.join(args.root, 'train')) else: raise TypeError("Unknow dataset : {:}".format(name)) if hasattr(dataset, 'targets'): targets = dataset.targets elif hasattr(dataset, 'train_labels'): targets = dataset.train_labels elif hasattr(dataset, 'imgs'): targets = [x[1] for x in dataset.imgs] else: raise ValueError('invalid pattern') print ('There are {:} samples in this dataset.'.format( len(targets) )) class2index = defaultdict(list) train, valid = [], [] random.seed(111) for index, cls in enumerate(targets): class2index[cls].append( index ) classes = sorted( list(class2index.keys()) ) for cls in classes: xlist = class2index[cls] xtrain = random.sample(xlist, int(len(xlist)*args.ratio)) xvalid = list(set(xlist) - set(xtrain)) train += xtrain valid += xvalid train.sort() valid.sort() ## for statistics class2numT, class2numV = defaultdict(int), defaultdict(int) for index in train: class2numT[ targets[index] ] += 1 for index in valid: class2numV[ targets[index] ] += 1 class2numT, class2numV = dict(class2numT), dict(class2numV) torch.save({'train': train, 'valid': valid, 'class2numTrain': class2numT, 'class2numValid': class2numV}, save_path) print ('-'*80)
Example #4
Source File: collect_env.py From detectron2 with Apache License 2.0 | 4 votes |
def collect_env_info(): data = [] data.append(("sys.platform", sys.platform)) data.append(("Python", sys.version.replace("\n", ""))) data.append(("Numpy", np.__version__)) try: from detectron2 import _C except ImportError: data.append(("detectron2._C", "failed to import")) else: data.append(("Detectron2 Compiler", _C.get_compiler_version())) data.append(("Detectron2 CUDA Compiler", _C.get_cuda_version())) data.append(get_env_module()) data.append(("PyTorch", torch.__version__)) data.append(("PyTorch Debug Build", torch.version.debug)) try: data.append(("torchvision", torchvision.__version__)) except AttributeError: data.append(("torchvision", "unknown")) has_cuda = torch.cuda.is_available() data.append(("CUDA available", has_cuda)) if has_cuda: devices = defaultdict(list) for k in range(torch.cuda.device_count()): devices[torch.cuda.get_device_name(k)].append(str(k)) for name, devids in devices.items(): data.append(("GPU " + ",".join(devids), name)) from torch.utils.cpp_extension import CUDA_HOME data.append(("CUDA_HOME", str(CUDA_HOME))) if CUDA_HOME is not None and os.path.isdir(CUDA_HOME): try: nvcc = os.path.join(CUDA_HOME, "bin", "nvcc") nvcc = subprocess.check_output("'{}' -V | tail -n1".format(nvcc), shell=True) nvcc = nvcc.decode("utf-8").strip() except subprocess.SubprocessError: nvcc = "Not Available" data.append(("NVCC", nvcc)) cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None) if cuda_arch_list: data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list)) data.append(("Pillow", PIL.__version__)) try: import cv2 data.append(("cv2", cv2.__version__)) except ImportError: pass env_str = tabulate(data) + "\n" env_str += collect_torch_env() return env_str
Example #5
Source File: __init__.py From mlflow with Apache License 2.0 | 4 votes |
def load_model(model_uri, **kwargs): """ Load a PyTorch model from a local file or a run. :param model_uri: The location, in URI format, of the MLflow model, for example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :param kwargs: kwargs to pass to ``torch.load`` method. :return: A PyTorch model. .. code-block:: python :caption: Example import torch import mlflow import mlflow.pytorch # Set values model_path_dir = ... run_id = "96771d893a5e46159d9f3b49bf9013e2" pytorch_model = mlflow.pytorch.load_model("runs:/" + run_id + "/" + model_path_dir) y_pred = pytorch_model(x_new_data) """ import torch local_model_path = _download_artifact_from_uri(artifact_uri=model_uri) try: pyfunc_conf = _get_flavor_configuration( model_path=local_model_path, flavor_name=pyfunc.FLAVOR_NAME) except MlflowException: pyfunc_conf = {} code_subpath = pyfunc_conf.get(pyfunc.CODE) if code_subpath is not None: pyfunc_utils._add_code_to_system_path( code_path=os.path.join(local_model_path, code_subpath)) pytorch_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) if torch.__version__ != pytorch_conf["pytorch_version"]: _logger.warning( "Stored model version '%s' does not match installed PyTorch version '%s'", pytorch_conf["pytorch_version"], torch.__version__) torch_model_artifacts_path = os.path.join(local_model_path, pytorch_conf['model_data']) return _load_model(path=torch_model_artifacts_path, **kwargs)