Python sonnet.SAME Examples
The following are 10
code examples of sonnet.SAME().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sonnet
, or try the search function
.
Example #1
Source File: i3d.py From I3D-Tensorflow with Apache License 2.0 | 6 votes |
def _build(self, inputs, is_training): """Connects the module to inputs. Args: inputs: Inputs to the Unit3D component. is_training: whether to use training mode for snt.BatchNorm (boolean). Returns: Outputs from the module. """ net = snt.Conv3D(output_channels=self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, padding=snt.SAME, use_bias=self._use_bias)(inputs) if self._use_batch_norm: bn = snt.BatchNorm() net = bn(net, is_training=is_training, test_local_stats=False) if self._activation_fn is not None: net = self._activation_fn(net) return net
Example #2
Source File: i3d.py From ACAM_Demo with MIT License | 6 votes |
def _build(self, inputs, is_training): """Connects the module to inputs. Args: inputs: Inputs to the Unit3D component. is_training: whether to use training mode for snt.BatchNorm (boolean). Returns: Outputs from the module. """ net = snt.Conv3D(output_channels=self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, padding=snt.SAME, use_bias=self._use_bias)(inputs) if self._use_batch_norm: bn = snt.BatchNorm() #################### Warning batchnorm is hard coded to is_training=False ################# # net = bn(net, is_training=is_training, test_local_stats=False) net = bn(net, is_training=False, test_local_stats=False) if self._activation_fn is not None: net = self._activation_fn(net) return net
Example #3
Source File: i3dtf.py From kinetics_i3d_pytorch with MIT License | 6 votes |
def _build(self, inputs, is_training): """Connects the module to inputs. Args: inputs: Inputs to the Unit3Dtf component. is_training: whether to use training mode for snt.BatchNorm (boolean). Returns: Outputs from the module. """ net = snt.Conv3D( output_channels=self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, padding=snt.SAME, use_bias=self._use_bias)(inputs) if self._use_batch_norm: bn = snt.BatchNorm() net = bn(net, is_training=is_training, test_local_stats=False) if self._activation_fn is not None: net = self._activation_fn(net) return net
Example #4
Source File: i3d.py From kinetics-i3d with Apache License 2.0 | 6 votes |
def _build(self, inputs, is_training): """Connects the module to inputs. Args: inputs: Inputs to the Unit3D component. is_training: whether to use training mode for snt.BatchNorm (boolean). Returns: Outputs from the module. """ net = snt.Conv3D(output_channels=self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, padding=snt.SAME, use_bias=self._use_bias)(inputs) if self._use_batch_norm: bn = snt.BatchNorm() net = bn(net, is_training=is_training, test_local_stats=False) if self._activation_fn is not None: net = self._activation_fn(net) return net
Example #5
Source File: i3d.py From visil with Apache License 2.0 | 6 votes |
def _build(self, inputs, is_training): """Connects the module to inputs. Args: inputs: Inputs to the Unit3D component. is_training: whether to use training mode for snt.BatchNorm (boolean). Returns: Outputs from the module. """ net = snt.Conv3D(output_channels=self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, padding=snt.SAME, use_bias=self._use_bias)(inputs) if self._use_batch_norm: bn = snt.BatchNorm() net = bn(net, is_training=is_training, test_local_stats=False) if self._activation_fn is not None: net = self._activation_fn(net) return net
Example #6
Source File: i3d.py From STPN with Apache License 2.0 | 6 votes |
def _build(self, inputs, is_training): """Connects the module to inputs. Args: inputs: Inputs to the Unit3D component. is_training: whether to use training mode for snt.BatchNorm (boolean). Returns: Outputs from the module. """ net = snt.Conv3D(output_channels=self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, padding=snt.SAME, use_bias=self._use_bias)(inputs) if self._use_batch_norm: bn = snt.BatchNorm() net = bn(net, is_training=is_training, test_local_stats=False) if self._activation_fn is not None: net = self._activation_fn(net) return net
Example #7
Source File: classifier_mnist.py From kfac with Apache License 2.0 | 5 votes |
def _build(self, inputs): if FLAGS.l2_reg: regularizers = {'w': lambda w: FLAGS.l2_reg*tf.nn.l2_loss(w), 'b': lambda w: FLAGS.l2_reg*tf.nn.l2_loss(w),} else: regularizers = None reshape = snt.BatchReshape([28, 28, 1]) conv = snt.Conv2D(2, 5, padding=snt.SAME, regularizers=regularizers) act = _NONLINEARITY(conv(reshape(inputs))) pool = tf.nn.pool(act, window_shape=(2, 2), pooling_type=_POOL, padding=snt.SAME, strides=(2, 2)) conv = snt.Conv2D(4, 5, padding=snt.SAME, regularizers=regularizers) act = _NONLINEARITY(conv(pool)) pool = tf.nn.pool(act, window_shape=(2, 2), pooling_type=_POOL, padding=snt.SAME, strides=(2, 2)) flatten = snt.BatchFlatten()(pool) linear = snt.Linear(32, regularizers=regularizers)(flatten) return snt.Linear(10, regularizers=regularizers)(linear)
Example #8
Source File: rnn.py From differentiable-particle-filters with MIT License | 5 votes |
def __init__(self, init_with_true_state=False, model='2lstm', **unused_kwargs): self.placeholders = {'o': tf.placeholder('float32', [None, None, 24, 24, 3], 'observations'), 'a': tf.placeholder('float32', [None, None, 3], 'actions'), 's': tf.placeholder('float32', [None, None, 3], 'states'), 'keep_prob': tf.placeholder('float32')} self.pred_states = None self.init_with_true_state = init_with_true_state self.model = model # build models # <-- observation self.encoder = snt.Sequential([ snt.nets.ConvNet2D([16, 32, 64], [[3, 3]], [2], [snt.SAME], activate_final=True, name='encoder/convnet'), snt.BatchFlatten(), lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']), snt.Linear(128, name='encoder/Linear'), tf.nn.relu, ]) # <-- action if self.model == '2lstm': self.rnn1 = snt.LSTM(512) self.rnn2 = snt.LSTM(512) if self.model == '2gru': self.rnn1 = snt.GRU(512) self.rnn2 = snt.GRU(512) elif self.model == 'ff': self.ff_lstm_replacement = snt.Sequential([ snt.Linear(512), tf.nn.relu, snt.Linear(512), tf.nn.relu]) self.belief_decoder = snt.Sequential([ snt.Linear(256), tf.nn.relu, snt.Linear(256), tf.nn.relu, snt.Linear(3) ])
Example #9
Source File: dpf_kitti.py From differentiable-particle-filters with MIT License | 4 votes |
def build_modules(self, min_obs_likelihood, proposer_keep_ratio, learn_gaussian_mle): """ :param min_obs_likelihood: :param proposer_keep_ratio: :return: None """ # MEASUREMENT MODEL # conv net for encoding the image self.encoder = snt.Sequential([ snt.nets.ConvNet2D([16, 16, 16, 16], [[7, 7], [5, 5], [5, 5], [5, 5]], [[1,1], [1, 2], [1, 2], [2, 2]], [snt.SAME], activate_final=True, name='encoder/convnet'), snt.BatchFlatten(), lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']), snt.Linear(128, name='encoder/linear'), tf.nn.relu ]) # observation likelihood estimator that maps states and image encodings to probabilities self.obs_like_estimator = snt.Sequential([ snt.Linear(128, name='obs_like_estimator/linear'), tf.nn.relu, snt.Linear(128, name='obs_like_estimator/linear'), tf.nn.relu, snt.Linear(1, name='obs_like_estimator/linear'), tf.nn.sigmoid, lambda x: x * (1 - min_obs_likelihood) + min_obs_likelihood ], name='obs_like_estimator') # motion noise generator used for motion sampling if learn_gaussian_mle: self.mo_noise_generator = snt.nets.MLP([32, 32, 4], activate_final=False, name='mo_noise_generator') else: self.mo_noise_generator = snt.nets.MLP([32, 32, 2], activate_final=False, name='mo_noise_generator') # odometry model (if we want to learn it) if self.learn_odom: self.mo_transition_model = snt.nets.MLP([128, 128, 128, self.state_dim], activate_final=False, name='mo_transition_model') # particle proposer that maps encodings to particles (if we want to use it) if self.use_proposer: self.particle_proposer = snt.Sequential([ snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, lambda x: tf.nn.dropout(x, proposer_keep_ratio), snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(4, name='particle_proposer/linear'), tf.nn.tanh, ]) self.noise_scaler1 = snt.Module(lambda x: x * tf.exp(10 * tf.get_variable('motion_sampler/noise_scaler1', initializer=np.array(0.0, dtype='float32')))) self.noise_scaler2 = snt.Module(lambda x: x * tf.exp(10 * tf.get_variable('motion_sampler/noise_scaler2', initializer=np.array(0.0, dtype='float32'))))
Example #10
Source File: dpf.py From differentiable-particle-filters with MIT License | 4 votes |
def build_modules(self, min_obs_likelihood, proposer_keep_ratio): """ :param min_obs_likelihood: :param proposer_keep_ratio: :return: None """ # MEASUREMENT MODEL # conv net for encoding the image self.encoder = snt.Sequential([ snt.nets.ConvNet2D([16, 32, 64], [[3, 3]], [2], [snt.SAME], activate_final=True, name='encoder/convnet'), snt.BatchFlatten(), lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']), snt.Linear(128, name='encoder/linear'), tf.nn.relu ]) # observation likelihood estimator that maps states and image encodings to probabilities self.obs_like_estimator = snt.Sequential([ snt.Linear(128, name='obs_like_estimator/linear'), tf.nn.relu, snt.Linear(128, name='obs_like_estimator/linear'), tf.nn.relu, snt.Linear(1, name='obs_like_estimator/linear'), tf.nn.sigmoid, lambda x: x * (1 - min_obs_likelihood) + min_obs_likelihood ], name='obs_like_estimator') # motion noise generator used for motion sampling self.mo_noise_generator = snt.nets.MLP([32, 32, self.state_dim], activate_final=False, name='mo_noise_generator') # odometry model (if we want to learn it) if self.learn_odom: self.mo_transition_model = snt.nets.MLP([128, 128, 128, self.state_dim], activate_final=False, name='mo_transition_model') # particle proposer that maps encodings to particles (if we want to use it) if self.use_proposer: self.particle_proposer = snt.Sequential([ snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, lambda x: tf.nn.dropout(x, proposer_keep_ratio), snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(4, name='particle_proposer/linear'), tf.nn.tanh, ])