Python tensorboardX.SummaryWriter() Examples
The following are 30
code examples of tensorboardX.SummaryWriter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorboardX
, or try the search function
.
Example #1
Source File: main.py From Extremely-Fine-Grained-Entity-Typing with MIT License | 6 votes |
def visualize(args): saved_path = constant.EXP_ROOT model = models.Model(args, constant.ANSWER_NUM_DICT[args.goal]) model.cuda() model.eval() model.load_state_dict(torch.load(saved_path + '/' + args.model_id + '_best.pt')["state_dict"]) label2id = constant.ANS2ID_DICT["open"] visualize = SummaryWriter("../visualize/" + args.model_id) # label_list = ["person", "leader", "president", "politician", "organization", "company", "athlete","adult", "male", "man", "television_program", "event"] label_list = list(label2id.keys()) ids = [label2id[_] for _ in label_list] if args.gcn: # connection_matrix = model.decoder.label_matrix + model.decoder.weight * model.decoder.affinity connection_matrix = model.decoder.label_matrix + model.decoder.weight * model.decoder.affinity label_vectors = model.decoder.transform(connection_matrix.mm(model.decoder.linear.weight) / connection_matrix.sum(1, keepdim=True)) else: label_vectors = model.decoder.linear.weight.data interested_vectors = torch.index_select(label_vectors, 0, torch.tensor(ids).to(torch.device("cuda"))) visualize.add_embedding(interested_vectors, metadata=label_list, label_img=None)
Example #2
Source File: experiments.py From pytorch-deep-sets with MIT License | 6 votes |
def __init__(self, lr=1e-3, wd=5e-3): self.lr = lr self.wd = wd self.train_db = MNISTSummation(min_len=2, max_len=10, dataset_len=100000, train=True, transform=MNIST_TRANSFORM) self.test_db = MNISTSummation(min_len=5, max_len=50, dataset_len=100000, train=False, transform=MNIST_TRANSFORM) self.the_phi = SmallMNISTCNNPhi() self.the_rho = SmallRho(input_size=10, output_size=1) self.model = InvariantModel(phi=self.the_phi, rho=self.the_rho) if torch.cuda.is_available(): self.model.cuda() self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.wd) self.summary_writer = SummaryWriter( log_dir='/home/souri/temp/deepsets/exp-lr:%1.5f-wd:%1.5f/' % (self.lr, self.wd))
Example #3
Source File: tensorboard.py From neural-pipeline with MIT License | 6 votes |
def __init__(self, fsm: FileStructManager, is_continue: bool, network_name: str = None): super().__init__() self.__writer = None self.__txt_log_file = None fsm.register_dir(self) dir = fsm.get_path(self) if dir is None: return dir = os.path.join(dir, network_name) if network_name is not None else dir if not (fsm.in_continue_mode() or is_continue) and os.path.exists(dir) and os.path.isdir(dir): idx = 0 tmp_dir = dir + "_v{}".format(idx) while os.path.exists(tmp_dir) and os.path.isdir(tmp_dir): idx += 1 tmp_dir = dir + "_v{}".format(idx) dir = tmp_dir os.makedirs(dir, exist_ok=True) self.__writer = SummaryWriter(dir) self.__txt_log_file = open(os.path.join(dir, "log.txt"), 'a' if is_continue else 'w')
Example #4
Source File: nvll.py From vmf_vae_nlp with MIT License | 6 votes |
def set_save_name_log_nvrnn(args): args.save_name = os.path.join( args.exp_path, 'Data{}_' \ 'Dist{}_Model{}_Enc{}Bi{}_Emb{}_Hid{}_lat{}_lr{}_drop{}_kappa{}_auxw{}_normf{}_nlay{}_mixunk{}_inpz{}_cdbit{}_cdbow{}_ann{}' .format( args.data_name, str(args.dist), args.model, args.enc_type, args.bi, args.emsize, args.nhid, args.lat_dim, args.lr, args.dropout, args.kappa, args.aux_weight, str(args.norm_func), args.nlayers, args.mix_unk, args.input_z, args.cd_bit, args.cd_bow, args.anneal)) writer = SummaryWriter(log_dir=args.save_name) log_name = args.save_name + '.log' logging.basicConfig(filename=log_name, level=logging.INFO) # set up logging to console console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) return args, writer
Example #5
Source File: nvll.py From vmf_vae_nlp with MIT License | 6 votes |
def set_save_name_log_nvdm(args): args.save_name = os.path.join(args.root_path, args.exp_path, 'Data{}_Dist{}_Model{}_Emb{}_Hid{}_lat{}_lr{}_drop{}_kappa{}_auxw{}_normf{}' .format( args.data_name, str(args.dist), args.model, args.emsize, args.nhid, args.lat_dim, args.lr, args.dropout, args.kappa, args.aux_weight, str(args.norm_func))) writer = SummaryWriter(log_dir=args.save_name) log_name = args.save_name + '.log' logging.basicConfig(filename=log_name, level=logging.INFO) # set up logging to console console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) return args, writer
Example #6
Source File: tensorboard_logger.py From Human-Pose-Transfer with MIT License | 6 votes |
def __init__(self, log_dir): try: from torch.utils.tensorboard import SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter except ImportError: raise RuntimeError("This contrib module requires tensorboardX to be installed. " "Please install it with command: \n pip install tensorboardX") try: self.writer = SummaryWriter(log_dir) except TypeError as err: if "type object got multiple values for keyword argument 'logdir'" == str(err): self.writer = SummaryWriter(log_dir=log_dir) warnings.warn('tensorboardX version < 1.7 will not be supported ' 'after ignite 0.3.0; please upgrade', DeprecationWarning) else: raise err
Example #7
Source File: train.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 6 votes |
def run(self): self.writer = SummaryWriter(os.path.join(self.env.model_dir, self.env.args.run)) try: height, width = tuple(map(int, self.config.get('image', 'size').split())) tensor = torch.randn(1, 3, height, width) step, epoch, dnn = self.env.load() self.writer.add_graph(dnn, (torch.autograd.Variable(tensor),)) except: traceback.print_exc() while True: name, kwargs = self.queue.get() if name is None: break func = getattr(self, 'summary_' + name) try: func(**kwargs) except: traceback.print_exc()
Example #8
Source File: DDPG.py From Deep-reinforcement-learning-with-pytorch with MIT License | 6 votes |
def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action).to(device) self.actor_target = Actor(state_dim, action_dim, max_action).to(device) self.actor_target.load_state_dict(self.actor.state_dict()) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4) self.critic = Critic(state_dim, action_dim).to(device) self.critic_target = Critic(state_dim, action_dim).to(device) self.critic_target.load_state_dict(self.critic.state_dict()) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3) self.replay_buffer = Replay_buffer() self.writer = SummaryWriter(directory) self.num_critic_update_iteration = 0 self.num_actor_update_iteration = 0 self.num_training = 0
Example #9
Source File: report_manager.py From ITDD with MIT License | 6 votes |
def build_report_manager(opt): if opt.tensorboard: from tensorboardX import SummaryWriter tensorboard_log_dir = opt.tensorboard_log_dir if not opt.train_from: tensorboard_log_dir += datetime.now().strftime("/%b-%d_%H-%M-%S") writer = SummaryWriter(tensorboard_log_dir, comment="Unmt") else: writer = None report_mgr = ReportMgr(opt.report_every, start_time=-1, tensorboard_writer=writer) return report_mgr
Example #10
Source File: TD3.py From Deep-reinforcement-learning-with-pytorch with MIT License | 6 votes |
def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action).to(device) self.actor_target = Actor(state_dim, action_dim, max_action).to(device) self.critic_1 = Critic(state_dim, action_dim).to(device) self.critic_1_target = Critic(state_dim, action_dim).to(device) self.critic_2 = Critic(state_dim, action_dim).to(device) self.critic_2_target = Critic(state_dim, action_dim).to(device) self.actor_optimizer = optim.Adam(self.actor.parameters()) self.critic_1_optimizer = optim.Adam(self.critic_1.parameters()) self.critic_2_optimizer = optim.Adam(self.critic_2.parameters()) self.actor_target.load_state_dict(self.actor.state_dict()) self.critic_1_target.load_state_dict(self.critic_1.state_dict()) self.critic_2_target.load_state_dict(self.critic_2.state_dict()) self.max_action = max_action self.memory = Replay_buffer(args.capacity) self.writer = SummaryWriter(directory) self.num_critic_update_iteration = 0 self.num_actor_update_iteration = 0 self.num_training = 0
Example #11
Source File: safelife_logger.py From safelife with Apache License 2.0 | 6 votes |
def init_logdir(self): if not self._has_init and self.logdir: if self.testing_log: self._testing_log = StreamingJSONWriter( os.path.join(self.logdir, self.testing_log)) if self.training_log: self._training_log = StreamingJSONWriter( os.path.join(self.logdir, self.training_log)) if self.summary_writer is None: try: from tensorboardX import SummaryWriter self.summary_writer = SummaryWriter(self.logdir) except ImportError: logger.error( "Could not import tensorboardX. " "SafeLifeLogger will not write data to tensorboard.") self._has_init = True
Example #12
Source File: solver.py From Tacotron-pytorch with MIT License | 6 votes |
def __init__(self, config, args): super(Trainer, self).__init__(config, args) # Best validation error, initialize it with a large number self.best_val_err = 1e10 # Logger Settings name = Path(args.checkpoint_dir).stem self.log_dir = str(Path(args.log_dir, name)) self.log_writer = SummaryWriter(self.log_dir) self.checkpoint_path = args.checkpoint_path self.checkpoint_dir = args.checkpoint_dir os.makedirs(self.checkpoint_dir, exist_ok=True) self.config = config self.audio_processor = AudioProcessor(**config['audio']) # Training detail self.step = 0 self.max_step = config['solver']['total_steps']
Example #13
Source File: run_molecule.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 6 votes |
def main(): args = molecule_arg_parser().parse_args() print(args) args.name_full = args.env + '_' + args.dataset + '_' + args.name args.name_full_load = args.env + '_' + args.dataset_load + '_' + args.name_load + '_' + str(args.load_step) # check and clean if not os.path.exists('molecule_gen'): os.makedirs('molecule_gen') if not os.path.exists('ckpt'): os.makedirs('ckpt') # only keep first worker result in tensorboard if MPI.COMM_WORLD.Get_rank() == 0: writer = SummaryWriter(comment='_'+args.dataset+'_'+args.name) else: writer = None train(args,seed=args.seed,writer=writer)
Example #14
Source File: evaluator.py From MazeExplorer with MIT License | 6 votes |
def __init__(self, mazes_path, tensorboard_dir, vector_length, mp, n_stack, action_frame_repeat=4, scaled_resolution=(42, 42)): self.tensorboard_dir = tensorboard_dir mazes_folders = [(x, os.path.join(mazes_path, x)) for x in os.listdir(mazes_path)] get_cfg = lambda x: os.path.join(x, [cfg for cfg in sorted(os.listdir(x)) if cfg.endswith('.cfg')][0]) self.eval_cfgs = [(x[0], get_cfg(x[1])) for x in mazes_folders] if not len(self.eval_cfgs): raise FileNotFoundError("No eval cfgs found") number_maps = 1 # number of maps inside each eval map path self.eval_envs = [(name, load_stable_baselines_env(cfg_path, vector_length, mp, n_stack, number_maps, action_frame_repeat, scaled_resolution)) for name, cfg_path in self.eval_cfgs] self.vector_length = vector_length self.mp = mp self.n_stack = n_stack self.eval_summary_writer = SummaryWriter(tensorboard_dir)
Example #15
Source File: train.py From MobileNet-V2 with Apache License 2.0 | 6 votes |
def __init__(self, model, trainloader, valloader, args): self.model = model self.trainloader = trainloader self.valloader = valloader self.args = args self.start_epoch = 0 self.best_top1 = 0.0 # Loss function and Optimizer self.loss = None self.optimizer = None self.create_optimization() # Model Loading self.load_pretrained_model() self.load_checkpoint(self.args.resume_from) # Tensorboard Writer self.summary_writer = SummaryWriter(log_dir=args.summary_dir)
Example #16
Source File: tensorboard_wrapper.py From deepbots with GNU General Public License v3.0 | 6 votes |
def __init__(self, controller, log_dir="logs/results", v_action=0, v_observation=0, v_reward=0, windows=[10, 100, 200]): self.controller = controller self.step_cntr = 0 self.step_global = 0 self.step_reset = 0 self.score = 0 self.score_history = [] self.v_action = v_action self.v_observation = v_observation self.v_reward = v_reward self.windows = windows self.file_writer = SummaryWriter(log_dir, flush_secs=30)
Example #17
Source File: TD3_BipedalWalker-v2.py From Deep-reinforcement-learning-with-pytorch with MIT License | 6 votes |
def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action).to(device) self.actor_target = Actor(state_dim, action_dim, max_action).to(device) self.critic_1 = Critic(state_dim, action_dim).to(device) self.critic_1_target = Critic(state_dim, action_dim).to(device) self.critic_2 = Critic(state_dim, action_dim).to(device) self.critic_2_target = Critic(state_dim, action_dim).to(device) self.actor_optimizer = optim.Adam(self.actor.parameters()) self.critic_1_optimizer = optim.Adam(self.critic_1.parameters()) self.critic_2_optimizer = optim.Adam(self.critic_2.parameters()) self.actor_target.load_state_dict(self.actor.state_dict()) self.critic_1_target.load_state_dict(self.critic_1.state_dict()) self.critic_2_target.load_state_dict(self.critic_2.state_dict()) self.max_action = max_action self.memory = Replay_buffer(args.capacity) self.writer = SummaryWriter(directory) self.num_critic_update_iteration = 0 self.num_actor_update_iteration = 0 self.num_training = 0
Example #18
Source File: tensorboard_handlers.py From seismic-deeplearning with MIT License | 5 votes |
def create_summary_writer(log_dir): writer = SummaryWriter(logdir=log_dir) return writer
Example #19
Source File: logger.py From yolov3-channel-pruning with MIT License | 5 votes |
def __init__(self, log_dir): """Create a summary writer logging to log_dir.""" timestamp = datetime.fromtimestamp(time.time()).strftime('%m%d-%H:%M') self.writer = SummaryWriter(os.path.join(log_dir, timestamp))
Example #20
Source File: baseline.py From Extremely-Fine-Grained-Entity-Typing with MIT License | 5 votes |
def __init__(self, train_log: SummaryWriter = None, validation_log: SummaryWriter = None) -> None: self._train_log = train_log self._validation_log = validation_log
Example #21
Source File: tensorboard_logger.py From DenseMatchingBenchmark with MIT License | 5 votes |
def before_run(self, runner): try: from tensorboardX import SummaryWriter except ImportError: raise ImportError('Please install tensorflow and tensorboardX ' 'to use TensorboardLoggerHook.') else: if self.log_dir is None: self.log_dir = osp.join(runner.work_dir, 'tf_logs') self.writer = SummaryWriter(self.log_dir)
Example #22
Source File: model.py From MusicTransformer-pytorch with MIT License | 5 votes |
def generate(self, prior: torch.Tensor, length=2048, tf_board_writer: SummaryWriter = None): decode_array = prior result_array = prior print(config) print(length) for i in Bar('generating').iter(range(length)): if decode_array.size(1) >= config.threshold_len: decode_array = decode_array[:, 1:] _, _, look_ahead_mask = \ utils.get_masked_with_pad_tensor(decode_array.size(1), decode_array, decode_array, pad_token=config.pad_token) # result, _ = self.forward(decode_array, lookup_mask=look_ahead_mask) # result, _ = decode_fn(decode_array, look_ahead_mask) result, _ = self.Decoder(decode_array, None) result = self.fc(result) result = result.softmax(-1) if tf_board_writer: tf_board_writer.add_image("logits", result, global_step=i) u = 0 if u > 1: result = result[:, -1].argmax(-1).to(decode_array.dtype) decode_array = torch.cat((decode_array, result.unsqueeze(-1)), -1) else: pdf = dist.OneHotCategorical(probs=result[:, -1]) result = pdf.sample().argmax(-1).unsqueeze(-1) # result = torch.transpose(result, 1, 0).to(torch.int32) decode_array = torch.cat((decode_array, result), dim=-1) result_array = torch.cat((result_array, result), dim=-1) del look_ahead_mask result_array = result_array[0] return result_array
Example #23
Source File: tensorboard.py From metal with Apache License 2.0 | 5 votes |
def __init__(self, log_dir=None, run_dir=None, run_name=None, **kwargs): super().__init__(log_dir=log_dir, run_dir=run_dir, run_name=run_name, **kwargs) # Set up TensorBoard summary writer self.tb_writer = SummaryWriter(self.log_subdir, filename_suffix=f".{run_name}")
Example #24
Source File: worker_utils.py From fedavgpy with MIT License | 5 votes |
def __init__(self, clients, options, name=''): self.options = options num_rounds = options['num_round'] + 1 self.bytes_written = {c.cid: [0] * num_rounds for c in clients} self.client_computations = {c.cid: [0] * num_rounds for c in clients} self.bytes_read = {c.cid: [0] * num_rounds for c in clients} # Statistics in training procedure self.loss_on_train_data = [0] * num_rounds self.acc_on_train_data = [0] * num_rounds self.gradnorm_on_train_data = [0] * num_rounds self.graddiff_on_train_data = [0] * num_rounds # Statistics in test procedure self.loss_on_eval_data = [0] * num_rounds self.acc_on_eval_data = [0] * num_rounds self.result_path = mkdir(os.path.join('./result', self.options['dataset'])) suffix = '{}_sd{}_lr{}_ep{}_bs{}_{}'.format(name, options['seed'], options['lr'], options['num_epoch'], options['batch_size'], 'w' if options['noaverage'] else 'a') self.exp_name = '{}_{}_{}_{}'.format(time.strftime('%Y-%m-%dT%H-%M-%S'), options['algo'], options['model'], suffix) if options['dis']: suffix = options['dis'] self.exp_name += '_{}'.format(suffix) train_event_folder = mkdir(os.path.join(self.result_path, self.exp_name, 'train.event')) eval_event_folder = mkdir(os.path.join(self.result_path, self.exp_name, 'eval.event')) self.train_writer = SummaryWriter(train_event_folder) self.eval_writer = SummaryWriter(eval_event_folder)
Example #25
Source File: log.py From pase with MIT License | 5 votes |
def __init__(self, save_path, log_types=['tensorboard', 'pkl']): self.save_path = save_path if len(log_types) == 0: raise ValueError('Please specify at least one log_type file to ' 'write to in the LogWriter!') self.writers = [] for log_type in log_types: if 'tensorboard' == log_type: self.writers.append(SummaryWriter(save_path)) elif 'pkl' == log_type: self.writers.append(PklWriter(save_path)) else: raise TypeError('Unrecognized log_writer type: ', log_writer)
Example #26
Source File: aux_model.py From self-supervised-da with MIT License | 5 votes |
def __init__(self, args, logger): self.args = args self.logger = logger self.writer = SummaryWriter(args.log_dir) cudnn.enabled = True # set up model self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = get_aux_net(args.network.arch)(aux_classes=args.aux_classes + 1, classes=args.n_classes) self.model = self.model.to(self.device) if args.mode == 'train': # set up optimizer, lr scheduler and loss functions optimizer = get_optimizer(self.args.training.optimizer) optimizer_params = {k: v for k, v in self.args.training.optimizer.items() if k != "name"} self.optimizer = optimizer(self.model.parameters(), **optimizer_params) self.scheduler = get_scheduler(self.optimizer, self.args.training.lr_scheduler) self.class_loss_func = nn.CrossEntropyLoss() self.start_iter = 0 # resume if args.training.resume: self.load(args.model_dir + '/' + args.training.resume) cudnn.benchmark = True elif args.mode == 'val': self.load(os.path.join(args.model_dir, args.validation.model)) else: self.load(os.path.join(args.model_dir, args.testing.model))
Example #27
Source File: progress_bar.py From fairseq with MIT License | 5 votes |
def __init__(self, wrapped_bar, tensorboard_logdir): self.wrapped_bar = wrapped_bar self.tensorboard_logdir = tensorboard_logdir if SummaryWriter is None: logger.warning( "tensorboard not found, please install with: pip install tensorboardX" )
Example #28
Source File: logger.py From Point-Then-Operate with Apache License 2.0 | 5 votes |
def __init__(self, log_dir): """Initialize summary writer.""" self.writer = SummaryWriter(log_dir)
Example #29
Source File: trainer.py From BigGAN-pytorch with Apache License 2.0 | 5 votes |
def build_tensorboard(self): from tensorboardX import SummaryWriter # from logger import Logger # self.logger = Logger(self.log_path) tf_logs_path = os.path.join(self.log_path, 'tf_logs') self.writer = SummaryWriter(log_dir=tf_logs_path)
Example #30
Source File: visualizer.py From DDPAE-video-prediction with MIT License | 5 votes |
def __init__(self, tb_path): self.tb_path = tb_path if os.path.exists(tb_path): if prompt_yes_no('{} already exists. Proceed?'.format(tb_path)): os.system('rm -r {}'.format(tb_path)) else: exit(0) self.writer = SummaryWriter(tb_path)