Python tensorflow.python.ops.nn.softplus() Examples
The following are 30
code examples of tensorflow.python.ops.nn.softplus().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.nn
, or try the search function
.
Example #1
Source File: student_t.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def __init__(self, df, loc, scale, validate_args=False, allow_nan_stats=True, name="StudentTWithAbsDfSoftplusScale"): parameters = locals() with ops.name_scope(name, values=[df, scale]): super(StudentTWithAbsDfSoftplusScale, self).__init__( df=math_ops.floor(math_ops.abs(df)), loc=loc, scale=nn.softplus(scale, name="softplus_scale"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
Example #2
Source File: gamma.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="GammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(GammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha), beta=nn.softplus(beta), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #3
Source File: inverse_gamma.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(InverseGammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha), beta=nn.softplus(beta), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #4
Source File: gamma.py From lambda-packs with MIT License | 6 votes |
def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="GammaWithSoftplusConcentrationRate"): parameters = locals() with ops.name_scope(name, values=[concentration, rate]): super(GammaWithSoftplusConcentrationRate, self).__init__( concentration=nn.softplus(concentration, name="softplus_concentration"), rate=nn.softplus(rate, name="softplus_rate"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
Example #5
Source File: mvn.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, mu, diag_stdev, validate_args=False, allow_nan_stats=True, name="MultivariateNormalDiagWithSoftplusStdDev"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[diag_stdev]) as ns: super(MultivariateNormalDiagWithSoftplusStDev, self).__init__( mu=mu, diag_stdev=nn.softplus(diag_stdev), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #6
Source File: bernoulli.py From deep_image_model with Apache License 2.0 | 6 votes |
def _kl_bernoulli_bernoulli(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a and b Bernoulli. Args: a: instance of a Bernoulli distribution object. b: instance of a Bernoulli distribution object. name: (optional) Name to use for created operations. default is "kl_bernoulli_bernoulli". Returns: Batchwise KL(a || b) """ with ops.name_scope(name, "kl_bernoulli_bernoulli", [a.logits, b.logits]): return (math_ops.sigmoid(a.logits) * (-nn.softplus(-a.logits) + nn.softplus(-b.logits)) + math_ops.sigmoid(-a.logits) * (-nn.softplus(a.logits) + nn.softplus(b.logits)))
Example #7
Source File: laplace.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="LaplaceWithSoftplusScale"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[loc, scale]) as ns: super(LaplaceWithSoftplusScale, self).__init__( loc=loc, scale=nn.softplus(scale), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #8
Source File: normal.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, mu, sigma, validate_args=False, allow_nan_stats=True, name="NormalWithSoftplusSigma"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[sigma]) as ns: super(NormalWithSoftplusSigma, self).__init__( mu=mu, sigma=nn.softplus(sigma), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #9
Source File: gamma.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="GammaWithSoftplusConcentrationRate"): parameters = locals() with ops.name_scope(name, values=[concentration, rate]): super(GammaWithSoftplusConcentrationRate, self).__init__( concentration=nn.softplus(concentration, name="softplus_concentration"), rate=nn.softplus(rate, name="softplus_rate"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
Example #10
Source File: beta.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def __init__(self, concentration1, concentration0, validate_args=False, allow_nan_stats=True, name="BetaWithSoftplusConcentration"): parameters = locals() with ops.name_scope(name, values=[concentration1, concentration0]) as ns: super(BetaWithSoftplusConcentration, self).__init__( concentration1=nn.softplus(concentration1, name="softplus_concentration1"), concentration0=nn.softplus(concentration0, name="softplus_concentration0"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #11
Source File: beta.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, a, b, validate_args=False, allow_nan_stats=True, name="BetaWithSoftplusAB"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[a, b]) as ns: super(BetaWithSoftplusAB, self).__init__( a=nn.softplus(a), b=nn.softplus(b), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #12
Source File: bernoulli.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _kl_bernoulli_bernoulli(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a and b Bernoulli. Args: a: instance of a Bernoulli distribution object. b: instance of a Bernoulli distribution object. name: (optional) Name to use for created operations. default is "kl_bernoulli_bernoulli". Returns: Batchwise KL(a || b) """ with ops.name_scope(name, "kl_bernoulli_bernoulli", values=[a.logits, b.logits]): delta_probs0 = nn.softplus(-b.logits) - nn.softplus(-a.logits) delta_probs1 = nn.softplus(b.logits) - nn.softplus(a.logits) return (math_ops.sigmoid(a.logits) * delta_probs0 + math_ops.sigmoid(-a.logits) * delta_probs1)
Example #13
Source File: gamma.py From keras-lambda with MIT License | 6 votes |
def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="GammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(GammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha, name="softplus_alpha"), beta=nn.softplus(beta, name="softplus_beta"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #14
Source File: inverse_gamma.py From keras-lambda with MIT License | 6 votes |
def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(InverseGammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha, name="softplus_alpha"), beta=nn.softplus(beta, name="softplus_gamma"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #15
Source File: beta.py From keras-lambda with MIT License | 6 votes |
def __init__(self, a, b, validate_args=False, allow_nan_stats=True, name="BetaWithSoftplusAB"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[a, b]) as ns: super(BetaWithSoftplusAB, self).__init__( a=nn.softplus(a, name="softplus_a"), b=nn.softplus(b, name="softplus_b"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #16
Source File: mvn.py From keras-lambda with MIT License | 6 votes |
def __init__(self, mu, diag_stdev, validate_args=False, allow_nan_stats=True, name="MultivariateNormalDiagWithSoftplusStdDev"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[diag_stdev]) as ns: super(MultivariateNormalDiagWithSoftplusStDev, self).__init__( mu=mu, diag_stdev=nn.softplus(diag_stdev), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #17
Source File: bernoulli.py From keras-lambda with MIT License | 6 votes |
def _kl_bernoulli_bernoulli(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a and b Bernoulli. Args: a: instance of a Bernoulli distribution object. b: instance of a Bernoulli distribution object. name: (optional) Name to use for created operations. default is "kl_bernoulli_bernoulli". Returns: Batchwise KL(a || b) """ with ops.name_scope(name, "kl_bernoulli_bernoulli", [a.logits, b.logits]): return (math_ops.sigmoid(a.logits) * (-nn.softplus(-a.logits) + nn.softplus(-b.logits)) + math_ops.sigmoid(-a.logits) * (-nn.softplus(a.logits) + nn.softplus(b.logits)))
Example #18
Source File: laplace.py From keras-lambda with MIT License | 6 votes |
def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="LaplaceWithSoftplusScale"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[loc, scale]) as ns: super(LaplaceWithSoftplusScale, self).__init__( loc=loc, scale=nn.softplus(scale, name="softplus_scale"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #19
Source File: normal.py From keras-lambda with MIT License | 6 votes |
def __init__(self, mu, sigma, validate_args=False, allow_nan_stats=True, name="NormalWithSoftplusSigma"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[sigma]) as ns: super(NormalWithSoftplusSigma, self).__init__( mu=mu, sigma=nn.softplus(sigma, name="softplus_sigma"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #20
Source File: laplace.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="LaplaceWithSoftplusScale"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[loc, scale]) as ns: super(LaplaceWithSoftplusScale, self).__init__( loc=loc, scale=nn.softplus(scale, name="softplus_scale"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #21
Source File: normal.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, mu, sigma, validate_args=False, allow_nan_stats=True, name="NormalWithSoftplusSigma"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[sigma]) as ns: super(NormalWithSoftplusSigma, self).__init__( mu=mu, sigma=nn.softplus(sigma, name="softplus_sigma"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #22
Source File: bernoulli.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _kl_bernoulli_bernoulli(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a and b Bernoulli. Args: a: instance of a Bernoulli distribution object. b: instance of a Bernoulli distribution object. name: (optional) Name to use for created operations. default is "kl_bernoulli_bernoulli". Returns: Batchwise KL(a || b) """ with ops.name_scope(name, "kl_bernoulli_bernoulli", [a.logits, b.logits]): return (math_ops.sigmoid(a.logits) * (-nn.softplus(-a.logits) + nn.softplus(-b.logits)) + math_ops.sigmoid(-a.logits) * (-nn.softplus(a.logits) + nn.softplus(b.logits)))
Example #23
Source File: beta.py From lambda-packs with MIT License | 6 votes |
def __init__(self, concentration1, concentration0, validate_args=False, allow_nan_stats=True, name="BetaWithSoftplusConcentration"): parameters = locals() with ops.name_scope(name, values=[concentration1, concentration0]) as ns: super(BetaWithSoftplusConcentration, self).__init__( concentration1=nn.softplus(concentration1, name="softplus_concentration1"), concentration0=nn.softplus(concentration0, name="softplus_concentration0"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #24
Source File: student_t.py From lambda-packs with MIT License | 6 votes |
def __init__(self, df, loc, scale, validate_args=False, allow_nan_stats=True, name="StudentTWithAbsDfSoftplusScale"): parameters = locals() with ops.name_scope(name, values=[df, scale]): super(StudentTWithAbsDfSoftplusScale, self).__init__( df=math_ops.floor(math_ops.abs(df)), loc=loc, scale=nn.softplus(scale, name="softplus_scale"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
Example #25
Source File: mvn.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, mu, diag_stdev, validate_args=False, allow_nan_stats=True, name="MultivariateNormalDiagWithSoftplusStdDev"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[diag_stdev]) as ns: super(MultivariateNormalDiagWithSoftplusStDev, self).__init__( mu=mu, diag_stdev=nn.softplus(diag_stdev), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #26
Source File: beta.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, a, b, validate_args=False, allow_nan_stats=True, name="BetaWithSoftplusAB"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[a, b]) as ns: super(BetaWithSoftplusAB, self).__init__( a=nn.softplus(a, name="softplus_a"), b=nn.softplus(b, name="softplus_b"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #27
Source File: inverse_gamma.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(InverseGammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha, name="softplus_alpha"), beta=nn.softplus(beta, name="softplus_gamma"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #28
Source File: inverse_gamma.py From lambda-packs with MIT License | 6 votes |
def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusConcentrationRate"): parameters = locals() with ops.name_scope(name, values=[concentration, rate]): super(InverseGammaWithSoftplusConcentrationRate, self).__init__( concentration=nn.softplus(concentration, name="softplus_concentration"), rate=nn.softplus(rate, name="softplus_rate"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
Example #29
Source File: gamma.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="GammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(GammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha, name="softplus_alpha"), beta=nn.softplus(beta, name="softplus_beta"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
Example #30
Source File: backend.py From lambda-packs with MIT License | 5 votes |
def softplus(x): """Softplus of a tensor. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.softplus(x)