Python tensorflow.keras.backend.set_session() Examples
The following are 10
code examples of tensorflow.keras.backend.set_session().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.backend
, or try the search function
.
Example #1
Source File: networks.py From rltrader with MIT License | 6 votes |
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) with graph.as_default(): if sess is not None: set_session(sess) inp = None output = None if self.shared_network is None: inp = Input((self.input_dim,)) output = self.get_network_head(inp).output else: inp = self.shared_network.input output = self.shared_network.output output = Dense( self.output_dim, activation=self.activation, kernel_initializer='random_normal')(output) self.model = Model(inp, output) self.model.compile( optimizer=SGD(lr=self.lr), loss=self.loss)
Example #2
Source File: networks.py From rltrader with MIT License | 6 votes |
def __init__(self, *args, num_steps=1, **kwargs): super().__init__(*args, **kwargs) with graph.as_default(): if sess is not None: set_session(sess) self.num_steps = num_steps inp = None output = None if self.shared_network is None: inp = Input((self.num_steps, self.input_dim, 1)) output = self.get_network_head(inp).output else: inp = self.shared_network.input output = self.shared_network.output output = Dense( self.output_dim, activation=self.activation, kernel_initializer='random_normal')(output) self.model = Model(inp, output) self.model.compile( optimizer=SGD(lr=self.lr), loss=self.loss)
Example #3
Source File: main.py From stacks-usecase with Apache License 2.0 | 6 votes |
def cpu_config(first=False): # intel optimizations num_cores, num_sockets = get_cpuinfo() if first: print("system info::") print("Number of physical cores:: ", num_cores) print("Number of sockets::", num_sockets) backend.set_session( tf.Session( config=tf.ConfigProto( intra_op_parallelism_threads=num_cores, inter_op_parallelism_threads=num_sockets, ) ) ) ########################################################### # Training ###########################################################
Example #4
Source File: networks.py From rltrader with MIT License | 5 votes |
def set_session(sess): pass
Example #5
Source File: networks.py From rltrader with MIT License | 5 votes |
def predict(self, sample): with self.lock: with graph.as_default(): if sess is not None: set_session(sess) return self.model.predict(sample).flatten()
Example #6
Source File: networks.py From rltrader with MIT License | 5 votes |
def train_on_batch(self, x, y): loss = 0. with self.lock: with graph.as_default(): if sess is not None: set_session(sess) loss = self.model.train_on_batch(x, y) return loss
Example #7
Source File: networks.py From rltrader with MIT License | 5 votes |
def get_shared_network(cls, net='dnn', num_steps=1, input_dim=0): with graph.as_default(): if sess is not None: set_session(sess) if net == 'dnn': return DNN.get_network_head(Input((input_dim,))) elif net == 'lstm': return LSTMNetwork.get_network_head( Input((num_steps, input_dim))) elif net == 'cnn': return CNN.get_network_head( Input((1, num_steps, input_dim)))
Example #8
Source File: train.py From rl with MIT License | 5 votes |
def _run(FLAGS): hparams = init_hparams(FLAGS) init_random_seeds(hparams) for run in range(hparams.copies): log_start_of_run(FLAGS, hparams, run) with tf.Session() as sess: K.set_session(sess) agent, checkpoint = init_agent(sess, hparams) restored = checkpoint.restore() if not restored: sess.run(tf.global_variables_initializer()) if not hparams.test_only: log_graph() agent.clone_weights() if hparams.num_workers == 1: train(0, agent, hparams, checkpoint) else: workers = [ threading.Thread( target=train, args=(worker_id, agent, hparams, checkpoint)) for worker_id in range(hparams.num_workers) ] for worker in workers: worker.start() for worker in workers: worker.join() else: test(hparams, agent) hparams = init_hparams(FLAGS)
Example #9
Source File: experiment_engine.py From brainstorm with MIT License | 5 votes |
def configure_gpus(gpus): # set gpu id and tf settings os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(g) for g in gpus]) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True K.set_session(tf.Session(config=config)) # loads a saved experiment using the saved parameters. # runs all initialization steps so that we can use the models right away
Example #10
Source File: train.py From MultiPlanarUNet with MIT License | 4 votes |
def run(project_dir, gpu_mon, logger, args): """ Runs training of a model in a mpunet project directory. Args: project_dir: A path to a mpunet project gpu_mon: An initialized GPUMonitor object logger: A mpunet logging object args: argparse arguments """ # Read in hyperparameters from YAML file from mpunet.hyperparameters import YAMLHParams hparams = YAMLHParams(project_dir + "/train_hparams.yaml", logger=logger) validate_hparams(hparams) # Wait for PID to terminate before continuing? if args.wait_for: from mpunet.utils import await_PIDs await_PIDs(args.wait_for) # Prepare sequence generators and potential model specific hparam changes train, val, hparams = get_data_sequences(project_dir=project_dir, hparams=hparams, logger=logger, args=args) # Set GPU visibility and create model with MirroredStrategy set_gpu(gpu_mon, args) import tensorflow as tf with tf.distribute.MirroredStrategy().scope(): model = get_model(project_dir=project_dir, train_seq=train, hparams=hparams, logger=logger, args=args) # Get trainer and compile model from mpunet.train import Trainer trainer = Trainer(model, logger=logger) trainer.compile_model(n_classes=hparams["build"].get("n_classes"), reduction=tf.keras.losses.Reduction.NONE, **hparams["fit"]) # Debug mode? if args.debug: from tensorflow.python import debug as tfdbg from tensorflow.keras import backend as K K.set_session(tfdbg.LocalCLIDebugWrapperSession(K.get_session())) # Fit the model _ = trainer.fit(train=train, val=val, train_im_per_epoch=args.train_images_per_epoch, val_im_per_epoch=args.val_images_per_epoch, hparams=hparams, no_im=args.no_images, **hparams["fit"]) save_final_weights(model, project_dir, logger)