Python tensorflow.keras.backend.set_value() Examples
The following are 16
code examples of tensorflow.keras.backend.set_value().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.backend
, or try the search function
.
Example #1
Source File: ttfs.py From snn_toolbox with MIT License | 6 votes |
def reset_spikevars(self, sample_idx): """ Reset variables present in spiking layers. Can be turned off for instance when a video sequence is tested. """ mod = self.config.getint('simulation', 'reset_between_nth_sample') mod = mod if mod else sample_idx + 1 do_reset = sample_idx % mod == 0 if do_reset: k.set_value(self.mem, self.init_membrane_potential()) k.set_value(self.time, np.float32(self.dt)) zeros_output_shape = np.zeros(self.output_shape, k.floatx()) if self.tau_refrac > 0: k.set_value(self.refrac_until, zeros_output_shape) if self.spiketrain is not None: k.set_value(self.spiketrain, zeros_output_shape) k.set_value(self.last_spiketimes, zeros_output_shape - 1)
Example #2
Source File: ttfs_dyn_thresh.py From snn_toolbox with MIT License | 6 votes |
def reset_spikevars(self, sample_idx): """ Reset variables present in spiking layers. Can be turned off for instance when a video sequence is tested. """ mod = self.config.getint('simulation', 'reset_between_nth_sample') mod = mod if mod else sample_idx + 1 do_reset = sample_idx % mod == 0 if do_reset: k.set_value(self.mem, self.init_membrane_potential()) k.set_value(self.time, np.float32(self.dt)) zeros_output_shape = np.zeros(self.output_shape, k.floatx()) if self.tau_refrac > 0: k.set_value(self.refrac_until, zeros_output_shape) if self.spiketrain is not None: k.set_value(self.spiketrain, zeros_output_shape) k.set_value(self.last_spiketimes, zeros_output_shape - 1) k.set_value(self.v_thresh, zeros_output_shape + self._v_thresh) k.set_value(self.prospective_spikes, zeros_output_shape) k.set_value(self.missing_impulse, zeros_output_shape)
Example #3
Source File: keras_model.py From DeepPavlov with Apache License 2.0 | 6 votes |
def _update_graph_variables(self, learning_rate: float = None, momentum: float = None): """ Update graph variables setting giving `learning_rate` and `momentum` Args: learning_rate: learning rate value to be set in graph (set if not None) momentum: momentum value to be set in graph (set if not None) Returns: None """ if learning_rate is not None: K.set_value(self.get_learning_rate_variable(), learning_rate) # log.info(f"Learning rate = {learning_rate}") if momentum is not None: K.set_value(self.get_momentum_variable(), momentum) # log.info(f"Momentum = {momentum}")
Example #4
Source File: keras_words_subtoken_metrics.py From code2vec with MIT License | 5 votes |
def reset_states(self): for v in self.variables: K.set_value(v, 0)
Example #5
Source File: utils.py From bcnn with MIT License | 5 votes |
def on_epoch_end (self, epoch, logs={}): if epoch >= self.kl_start_epoch - 2: new_kl_alpha = min(K.get_value(self.kl_alpha) + self.kl_alpha_increase_per_epoch, 1.) K.set_value(self.kl_alpha, new_kl_alpha) print ("Current KL Weight is " + str(K.get_value(self.kl_alpha)))
Example #6
Source File: cohens_kappa.py From addons with Apache License 2.0 | 5 votes |
def reset_states(self): """Resets all of the metric state variables.""" for v in self.variables: K.set_value( v, np.zeros((self.num_classes, self.num_classes), v.dtype.as_numpy_dtype), )
Example #7
Source File: shapelets.py From tslearn with BSD 2-Clause "Simplified" License | 5 votes |
def _set_model_layers(self, X, ts_sz, d, n_classes): super()._set_model_layers(X=X, ts_sz=ts_sz, d=d, n_classes=n_classes) K.set_value(self.model_.optimizer.lr, self.learning_rate)
Example #8
Source File: ttfs.py From snn_toolbox with MIT License | 5 votes |
def set_time(self, time): """Set simulation time variable. Parameters ---------- time: float Current simulation time. """ k.set_value(self.time, time)
Example #9
Source File: ttfs_dyn_thresh.py From snn_toolbox with MIT License | 5 votes |
def set_time(self, time): """Set simulation time variable. Parameters ---------- time: float Current simulation time. """ k.set_value(self.time, time)
Example #10
Source File: ttfs_corrective.py From snn_toolbox with MIT License | 5 votes |
def set_time(self, time): """Set simulation time variable. Parameters ---------- time: float Current simulation time. """ k.set_value(self.time, time)
Example #11
Source File: callbacks.py From EfficientDet with Apache License 2.0 | 5 votes |
def on_batch_end(self, batch, logs): if self.iteration_id > self.start_iteration: # (1, 0) cosine_decay = 0.5 * (1 + np.cos(np.pi * (self.cycle_iteration_id / self.cycle_iterations))) decayed_lr = (self.max_lr - self.min_lr) * cosine_decay + self.min_lr K.set_value(self.model.optimizer.lr, decayed_lr) if self.cycle_iteration_id == self.cycle_iterations: self.cycle_iteration_id = 0 self.cycle_iterations = int(self.cycle_iterations * self.t_mu) else: self.cycle_iteration_id = self.cycle_iteration_id + 1 self.lrs.append(decayed_lr) elif self.iteration_id == self.start_iteration: self.max_lr = K.get_value(self.model.optimizer.lr) self.iteration_id += 1
Example #12
Source File: callbacks.py From EfficientDet with Apache License 2.0 | 5 votes |
def on_batch_end(self, batch, logs): lr = K.get_value(self.model.optimizer.lr) self.lrs.append(lr) self.losses.append(logs["loss"]) K.set_value(self.model.optimizer.lr, lr * self.factor)
Example #13
Source File: callbacks.py From EfficientDet with Apache License 2.0 | 5 votes |
def on_train_begin(self, logs={}): K.set_value(self.model.optimizer.lr, self.min_lr)
Example #14
Source File: callbacks.py From EfficientDet with Apache License 2.0 | 5 votes |
def on_batch_begin(self, batch, logs): if self.iteration_id < self.iterations: lr = (self.max_lr - self.min_lr) / self.iterations * (self.iteration_id + 1) + self.min_lr K.set_value(self.model.optimizer.lr, lr) self.iteration_id += 1 self.lrs.append(K.get_value(self.model.optimizer.lr))
Example #15
Source File: callbacks.py From EfficientDet with Apache License 2.0 | 5 votes |
def on_train_begin(self, logs={}): self.max_lr = K.get_value(self.model.optimizer.lr) K.set_value(self.model.optimizer.lr, self.min_lr) self.lrs.append(K.get_value(self.model.optimizer.lr))
Example #16
Source File: model.py From CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing with MIT License | 4 votes |
def train_one_step(self, data_batch, step, training): dtn = self.dtn dtn_op = self.dtn_op image, dmap, labels = data_batch with tf.GradientTape() as tape: dmap_pred, cls_pred, route_value, leaf_node_mask, tru_loss, mu_update, eigenvalue, trace =\ dtn(image, labels, True) # supervised feature loss depth_map_loss = leaf_l1_loss(dmap_pred, tf.image.resize(dmap, [32, 32]), leaf_node_mask) class_loss = leaf_l1_loss(cls_pred, labels, leaf_node_mask) supervised_loss = depth_map_loss + 0.001*class_loss # unsupervised tree loss route_loss = tf.reduce_mean(tf.stack(tru_loss[0], axis=0) * [1., 0.5, 0.5, 0.25, 0.25, 0.25, 0.25]) uniq_loss = tf.reduce_mean(tf.stack(tru_loss[1], axis=0) * [1., 0.5, 0.5, 0.25, 0.25, 0.25, 0.25]) eigenvalue = np.mean(np.stack(eigenvalue, axis=0) * [1., 0.5, 0.5, 0.25, 0.25, 0.25, 0.25]) trace = np.mean(np.stack(trace, axis=0) * [1., 0.5, 0.5, 0.25, 0.25, 0.25, 0.25]) unsupervised_loss = 2*route_loss + 0.001*uniq_loss # total loss if step > 10000: loss = supervised_loss + unsupervised_loss else: loss = supervised_loss if training: # back-propagate gradients = tape.gradient(loss, dtn.variables) dtn_op.apply_gradients(zip(gradients, dtn.variables)) # Update mean values for each tree node mu_update_rate = self.config.TRU_PARAMETERS["mu_update_rate"] mu = [dtn.tru0.project.mu, dtn.tru1.project.mu, dtn.tru2.project.mu, dtn.tru3.project.mu, dtn.tru4.project.mu, dtn.tru5.project.mu, dtn.tru6.project.mu] for mu, mu_of_visit in zip(mu, mu_update): if step == 0: update_mu = mu_of_visit else: update_mu = mu_of_visit * mu_update_rate + mu * (1 - mu_update_rate) K.set_value(mu, update_mu) # leaf counts spoof_counts = [] for leaf in leaf_node_mask: spoof_count = tf.reduce_sum(leaf[:, 0]).numpy() spoof_counts.append(int(spoof_count)) _to_plot = [image, dmap, dmap_pred[0]] return depth_map_loss, class_loss, route_loss, uniq_loss, spoof_counts, eigenvalue, trace, _to_plot