Python tensorflow.keras.backend.sigmoid() Examples
The following are 7
code examples of tensorflow.keras.backend.sigmoid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.backend
, or try the search function
.
Example #1
Source File: topk_pool.py From spektral with MIT License | 6 votes |
def __init__(self, ratio, return_mask=False, sigmoid_gating=False, kernel_initializer='glorot_uniform', kernel_regularizer=None, kernel_constraint=None, **kwargs): super().__init__(**kwargs) self.ratio = ratio self.return_mask = return_mask self.sigmoid_gating = sigmoid_gating self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh self.kernel_initializer = initializers.get(kernel_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.kernel_constraint = constraints.get(kernel_constraint)
Example #2
Source File: efficientnet.py From keras_imagenet with MIT License | 6 votes |
def get_swish(**kwargs): def swish(x): """Swish activation function: x * sigmoid(x). Reference: [Searching for Activation Functions](https://arxiv.org/abs/1710.05941) """ if backend.backend() == 'tensorflow': try: # The native TF implementation has a more # memory-efficient gradient implementation return backend.tf.nn.swish(x) except AttributeError: pass return x * backend.sigmoid(x) return swish
Example #3
Source File: efficientnet.py From keras-YOLOv3-model-set with MIT License | 6 votes |
def swish(x): """Swish activation function. # Arguments x: Input tensor. # Returns The Swish activation: `x * sigmoid(x)`. # References [Searching for Activation Functions](https://arxiv.org/abs/1710.05941) """ if K.backend() == 'tensorflow': try: # The native TF implementation has a more # memory-efficient gradient implementation return K.tf.nn.swish(x) except AttributeError: pass return x * K.sigmoid(x)
Example #4
Source File: cells.py From DeepPavlov with Apache License 2.0 | 5 votes |
def call(self, inputs, **kwargs): assert isinstance(inputs, list) and len(inputs) == 3 first, second, features = inputs[0], inputs[1], inputs[2] if not self.from_logits: first = K.clip(first, 1e-10, 1.0) second = K.clip(second, 1e-10, 1.0) first_, second_ = K.log(first), K.log(second) else: first_, second_ = first, second # embedded_features.shape = (M, T, 1) if self.use_intermediate_layer: features = K.dot(features, self.first_kernel) features = K.bias_add(features, self.first_bias, data_format="channels_last") features = self.intermediate_activation(features) embedded_features = K.dot(features, self.features_kernel) embedded_features = K.bias_add( embedded_features, self.features_bias, data_format="channels_last") if self.use_dimension_bias: tiling_shape = [1] * (K.ndim(first) - 1) + [K.shape(first)[-1]] embedded_features = K.tile(embedded_features, tiling_shape) embedded_features = K.bias_add( embedded_features, self.dimensions_bias, data_format="channels_last") sigma = K.sigmoid(embedded_features) result = weighted_sum(first_, second_, sigma, self.first_threshold, self.second_threshold) probs = K.softmax(result) if self.return_logits: return [probs, result] return probs
Example #5
Source File: decode.py From Centernet-Tensorflow2.0 with Apache License 2.0 | 5 votes |
def _ctdet_decode(hm, reg, wh, k=100, output_stride=4): hm = K.sigmoid(hm) hm = _nms(hm) hm_shape = K.shape(hm) reg_shape = K.shape(reg) wh_shape = K.shape(wh) batch, width, cat = hm_shape[0], hm_shape[2], hm_shape[3] hm_flat = K.reshape(hm, (batch, -1)) reg_flat = K.reshape(reg, (reg_shape[0], -1, reg_shape[-1])) wh_flat = K.reshape(wh, (wh_shape[0], -1, wh_shape[-1])) def _process_sample(args): _hm, _reg, _wh = args _scores, _inds = tf.math.top_k(_hm, k=k, sorted=True) _classes = K.cast(_inds % cat, 'float32') _inds = K.cast(_inds / cat, 'int32') _xs = K.cast(_inds % width, 'float32') _ys = K.cast(K.cast(_inds / width, 'int32'), 'float32') _wh = K.gather(_wh, _inds) _reg = K.gather(_reg, _inds) _xs = _xs + _reg[..., 0] _ys = _ys + _reg[..., 1] _x1 = _xs - _wh[..., 0] / 2 _y1 = _ys - _wh[..., 1] / 2 _x2 = _xs + _wh[..., 0] / 2 _y2 = _ys + _wh[..., 1] / 2 # rescale to image coordinates _x1 = output_stride * _x1 _y1 = output_stride * _y1 _x2 = output_stride * _x2 _y2 = output_stride * _y2 _detection = K.stack([_x1, _y1, _x2, _y2, _scores, _classes], -1) return _detection detections = K.map_fn(_process_sample, [hm_flat, reg_flat, wh_flat], dtype=K.floatx()) return detections
Example #6
Source File: postprocess.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def yolo3_head(feats, anchors, num_classes, input_shape, calc_loss=False): """Convert final layer features to bounding box parameters.""" num_anchors = len(anchors) # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] # height, width grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # Adjust preditions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs
Example #7
Source File: postprocess.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def yolo2_head(feats, anchors, num_classes, input_shape, calc_loss=False): """Convert final layer features to bounding box parameters.""" num_anchors = len(anchors) # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] # height, width grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # Adjust preditions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats)) #box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(grid_shape[..., ::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.softmax(feats[..., 5:]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs