Python tensorflow.keras.preprocessing.image.ImageDataGenerator() Examples
The following are 23
code examples of tensorflow.keras.preprocessing.image.ImageDataGenerator().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.preprocessing.image
, or try the search function
.
Example #1
Source File: coco_hpe2_dataset.py From imgclsmob with MIT License | 6 votes |
def cocohpe_val_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for validation subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = CocoHpeImageDataGenerator( preprocessing_function=(lambda img: ds_metainfo.val_transform2(ds_metainfo=ds_metainfo)(img)), data_format=data_format) return data_generator
Example #2
Source File: coco_hpe3_dataset.py From imgclsmob with MIT License | 6 votes |
def cocohpe_val_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for validation subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = CocoHpeImageDataGenerator( preprocessing_function=(lambda img: ds_metainfo.val_transform2(ds_metainfo=ds_metainfo)(img)), data_format=data_format) return data_generator
Example #3
Source File: coco_hpe1_dataset.py From imgclsmob with MIT License | 6 votes |
def cocohpe_val_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for validation subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = CocoHpeImageDataGenerator( preprocessing_function=(lambda img: ds_metainfo.val_transform2(ds_metainfo=ds_metainfo)(img)), data_format=data_format) return data_generator
Example #4
Source File: FcDEC.py From DEC-DA with MIT License | 6 votes |
def __init__(self, dims, n_clusters=10, alpha=1.0): super(FcDEC, self).__init__() self.dims = dims self.input_dim = dims[0] self.n_stacks = len(self.dims) - 1 self.n_clusters = n_clusters self.alpha = alpha self.pretrained = False self.datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, rotation_range=10) self.autoencoder, self.encoder = autoencoder(self.dims) # prepare FcDEC model clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(self.encoder.output) self.model = Model(inputs=self.encoder.input, outputs=clustering_layer)
Example #5
Source File: cifar10_cls_dataset.py From imgclsmob with MIT License | 6 votes |
def cifar10_val_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for validation subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = ImageDataGenerator( preprocessing_function=(lambda img: img_normalization( img=img, mean_rgb=ds_metainfo.mean_rgb, std_rgb=ds_metainfo.std_rgb)), data_format=data_format) return data_generator
Example #6
Source File: cub200_2011_cls_dataset.py From imgclsmob with MIT License | 6 votes |
def cub200_val_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for validation subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo CUB-200-2011 dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = CubImageDataGenerator( preprocessing_function=(lambda img: img_normalization( img=img, mean_rgb=ds_metainfo.mean_rgb, std_rgb=ds_metainfo.std_rgb)), data_format=data_format) return data_generator
Example #7
Source File: imagenet1k_cls_dataset.py From imgclsmob with MIT License | 6 votes |
def imagenet_val_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for validation subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = ImageDataGenerator( preprocessing_function=(lambda img: img_normalization( img=img, mean_rgb=ds_metainfo.mean_rgb, std_rgb=ds_metainfo.std_rgb)), data_format=data_format) return data_generator
Example #8
Source File: coco_hpe2_dataset.py From imgclsmob with MIT License | 5 votes |
def cocohpe_val_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for validation subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "val" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation="bilinear", dataset=ds_metainfo.dataset_class( root=ds_metainfo.root_dir_path, mode="val", transform=ds_metainfo.val_transform2( ds_metainfo=ds_metainfo))) return generator
Example #9
Source File: train_imagenet.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def evaluate_model(args, model, input_shape): # eval data generator eval_datagen = ImageDataGenerator(preprocessing_function=preprocess) eval_generator = eval_datagen.flow_from_directory( args.val_data_path, target_size=input_shape, batch_size=args.batch_size) # get optimizer optimizer = get_optimizer(args.optim_type, args.learning_rate) # start training model.compile( optimizer=optimizer, metrics=['accuracy', 'top_k_categorical_accuracy'], loss='categorical_crossentropy') print('Evaluate on {} samples, with batch size {}.'.format(eval_generator.samples, args.batch_size)) scores = model.evaluate_generator( eval_generator, steps=eval_generator.samples // args.batch_size, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=1) print('Evaluate loss:', scores[0]) print('Top-1 accuracy:', scores[1]) print('Top-k accuracy:', scores[2])
Example #10
Source File: cifar_tf_example.py From ray with Apache License 2.0 | 5 votes |
def _make_generator(x_train, y_train, batch_size): # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 # divide inputs by std of the dataset featurewise_std_normalization=False, samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening zca_epsilon=1e-06, # epsilon for ZCA whitening # randomly rotate images in the range (degrees, 0 to 180) rotation_range=0, # randomly shift images horizontally (fraction of total width) width_shift_range=0.1, # randomly shift images vertically (fraction of total height) height_shift_range=0.1, shear_range=0., # set range for random shear zoom_range=0., # set range for random zoom channel_shift_range=0., # set range for random channel shifts # set mode for filling points outside the input boundaries fill_mode="nearest", cval=0., # value used for fill_mode = "constant" horizontal_flip=True, # randomly flip images vertical_flip=False, # randomly flip images # set rescaling factor (applied before any other transformation) rescale=None, # set function that will be applied on each input preprocessing_function=None, # image data format, either "channels_first" or "channels_last" data_format=None, # fraction of images reserved for validation (strictly between 0 and 1) validation_split=0.0) # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) return datagen.flow(x_train, y_train, batch_size=batch_size)
Example #11
Source File: ConvDEC.py From DEC-DA with MIT License | 5 votes |
def __init__(self, input_shape, filters=[32, 64, 128, 10], n_clusters=10): self.n_clusters = n_clusters self.input_shape = input_shape self.datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, rotation_range=10) self.datagenx = ImageDataGenerator() self.autoencoder, self.encoder = CAE(input_shape, filters) # Define ConvIDEC model clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(self.encoder.output) self.model = Model(inputs=self.autoencoder.input, outputs=clustering_layer)
Example #12
Source File: cub200_2011_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def cub200_val_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for validation subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ root = ds_metainfo.root_dir_path generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation=ds_metainfo.interpolation_msg, mode="val") return generator
Example #13
Source File: cub200_2011_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def cub200_train_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for training subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ root = ds_metainfo.root_dir_path generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation=ds_metainfo.interpolation_msg, mode="val") return generator
Example #14
Source File: imagenet1k_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def imagenet_val_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for validation subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "val" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation=ds_metainfo.interpolation_msg) return generator
Example #15
Source File: imagenet1k_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def imagenet_train_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for training subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "train" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation=ds_metainfo.interpolation_msg) return generator
Example #16
Source File: imagenet1k_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def imagenet_train_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for training subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = ImageDataGenerator( preprocessing_function=(lambda img: img_normalization( img=img, mean_rgb=ds_metainfo.mean_rgb, std_rgb=ds_metainfo.std_rgb)), shear_range=0.2, zoom_range=0.2, horizontal_flip=True, data_format=data_format) return data_generator
Example #17
Source File: cifar10_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def cifar10_val_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for validation subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ assert(ds_metainfo is not None) _, (x_test, y_test) = cifar10.load_data() generator = data_generator.flow( x=x_test, y=y_test, batch_size=batch_size, shuffle=False) return generator
Example #18
Source File: cifar10_cls_dataset.py From imgclsmob with MIT License | 5 votes |
def cifar10_train_transform(ds_metainfo, data_format="channels_last"): """ Create image transform sequence for training subset. Parameters: ---------- ds_metainfo : DatasetMetaInfo ImageNet-1K dataset metainfo. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. Returns ------- ImageDataGenerator Image transform sequence. """ data_generator = ImageDataGenerator( preprocessing_function=(lambda img: img_normalization( img=img, mean_rgb=ds_metainfo.mean_rgb, std_rgb=ds_metainfo.std_rgb)), shear_range=0.2, zoom_range=0.2, horizontal_flip=True, data_format=data_format) return data_generator
Example #19
Source File: coco_hpe1_dataset.py From imgclsmob with MIT License | 5 votes |
def cocohpe_test_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for testing subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "val" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation="bilinear", dataset=ds_metainfo.dataset_class( root=ds_metainfo.root_dir_path, mode="test", transform=ds_metainfo.test_transform2( ds_metainfo=ds_metainfo))) return generator
Example #20
Source File: coco_hpe1_dataset.py From imgclsmob with MIT License | 5 votes |
def cocohpe_val_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for validation subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "val" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation="bilinear", dataset=ds_metainfo.dataset_class( root=ds_metainfo.root_dir_path, mode="val", transform=ds_metainfo.val_transform2( ds_metainfo=ds_metainfo))) return generator
Example #21
Source File: coco_hpe3_dataset.py From imgclsmob with MIT License | 5 votes |
def cocohpe_val_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for validation subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "val" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation="bilinear", dataset=ds_metainfo.dataset_class( root=ds_metainfo.root_dir_path, mode="val", transform=ds_metainfo.val_transform2( ds_metainfo=ds_metainfo))) return generator
Example #22
Source File: coco_hpe2_dataset.py From imgclsmob with MIT License | 5 votes |
def cocohpe_test_generator(data_generator, ds_metainfo, batch_size): """ Create image generator for testing subset. Parameters: ---------- data_generator : ImageDataGenerator Image transform sequence. ds_metainfo : DatasetMetaInfo Pascal VOC2012 dataset metainfo. batch_size : int Batch size. Returns ------- Sequential Image transform sequence. """ split = "val" root = ds_metainfo.root_dir_path root = os.path.join(root, split) generator = data_generator.flow_from_directory( directory=root, target_size=ds_metainfo.input_image_size, class_mode="binary", batch_size=batch_size, shuffle=False, interpolation="bilinear", dataset=ds_metainfo.dataset_class( root=ds_metainfo.root_dir_path, mode="test", transform=ds_metainfo.test_transform2( ds_metainfo=ds_metainfo))) return generator
Example #23
Source File: train.py From TF.Keras-Commonly-used-models with Apache License 2.0 | 4 votes |
def generate(batch, shape, ptrain, pval): """Data generation and augmentation # Arguments batch: Integer, batch size. size: Integer, image size. ptrain: train dir. pval: eval dir. # Returns train_generator: train set generator validation_generator: validation set generator count1: Integer, number of train set. count2: Integer, number of test set. """ # Using the data Augmentation in traning data datagen1 = ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, rotation_range=90, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen2 = ImageDataGenerator(rescale=1. / 255) train_generator = datagen1.flow_from_directory( ptrain, target_size=shape, batch_size=batch, class_mode='categorical') validation_generator = datagen2.flow_from_directory( pval, target_size=shape, batch_size=batch, class_mode='categorical') count1 = 0 for root, dirs, files in os.walk(ptrain): for each in files: count1 += 1 count2 = 0 for root, dirs, files in os.walk(pval): for each in files: count2 += 1 return train_generator, validation_generator, count1, count2