Python torch.cuda.is_available() Examples
The following are 9
code examples of torch.cuda.is_available().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.cuda
, or try the search function
.
Example #1
Source File: learners.py From TorchFusion with MIT License | 6 votes |
def __init__(self, gen_model,disc_model,use_cuda_if_available=True): super(BaseGanLearner,self).__init__() self.model_dir = os.getcwd() self.gen_model = gen_model self.disc_model = disc_model self.cuda = False if use_cuda_if_available and cuda.is_available(): self.cuda = True self.__train_history__ = {} self.gen_optimizer = None self.disc_optimizer = None self.gen_running_loss = None self.disc_running_loss = None self.visdom_log = None self.tensorboard_log = None
Example #2
Source File: learners.py From TorchFusion with MIT License | 5 votes |
def __init__(self, use_cuda_if_available=True): self.cuda = False self.fp16_mode = False if use_cuda_if_available and cuda.is_available(): self.cuda = True cudnn.benchmark = True self.epoch_start_funcs = [] self.batch_start_funcs = [] self.epoch_end_funcs = [] self.batch_end_funcs = [] self.train_completed_funcs = []
Example #3
Source File: torchbk.py From quantumflow with Apache License 2.0 | 5 votes |
def gpu_available() -> bool: return False
Example #4
Source File: iterators.py From quick-nlp with MIT License | 5 votes |
def __init__(self, dataset, batch_size, sort_key, target_roles=None, max_context_size=130000, backwards=False, **kwargs): self.target_roles = target_roles self.text_field = dataset.fields['text'] self.max_context_size = max_context_size self.backwards = backwards device = None if cuda.is_available() else -1 super().__init__(dataset=dataset, batch_size=batch_size, sort_key=sort_key, device=device, **kwargs)
Example #5
Source File: iterators.py From quick-nlp with MIT License | 5 votes |
def __init__(self, dataset, batch_size, sort_key_inner, sort_key_outer, sort_key, target_roles=None, max_context_size=130000, backwards=False, **kwargs): self.target_roles = target_roles self.text_field = dataset.fields['text'] self.max_context_size = max_context_size self.backwards = backwards device = None if cuda.is_available() else -1 self.sort_key_inner = sort_key_inner # inner should be utterance sizes self.sort_key_outer = sort_key_outer # outer should be dialogue sizes super().__init__(dataset=dataset, batch_size=batch_size, sort_key=sort_key, device=device, **kwargs)
Example #6
Source File: torchtext_data_loaders.py From quick-nlp with MIT License | 5 votes |
def __init__(self, dataset: Dataset, batch_size: int, source_names: List[str], target_names: List[str], sort_key: Optional[Callable] = None, **kwargs): self.dataset = dataset self.source_names = source_names self.target_names = target_names # sort by the first field if no sort key is given if sort_key is None: def sort_key(x): return getattr(x, self.source_names[0]) device = None if cuda.is_available() else -1 self.dl = BucketIterator(dataset, batch_size=batch_size, sort_key=sort_key, device=device, **kwargs) self.bs = batch_size self.iter = 0
Example #7
Source File: utils.py From toward-controlled-generation-of-text-pytorch with MIT License | 5 votes |
def check_cuda(torch_var, use_cuda=False): if use_cuda and cuda.is_available(): return torch_var.cuda() else: return torch_var
Example #8
Source File: gpu_info.py From dreampower with GNU General Public License v3.0 | 5 votes |
def get_info(): """ Get gpu info. :return: <dict> gpu info """ return { "has_cuda": cuda.is_available(), "devices": [] if not cuda.is_available() else [cuda.get_device_name(i) for i in range(cuda.device_count())], }
Example #9
Source File: generate.py From pixel-constrained-cnn-pytorch with Apache License 2.0 | 4 votes |
def generate_images(model, batch, mask_descriptors, num_samples=64, temp=1., verbose=False): """Generates image completions based on the images in batch masked by the masks in mask_descriptors. This will generate batch.size(0) * len(mask_descriptors) * num_samples completions, i.e. num_samples completions for every image and mask combination. Parameters ---------- model : pixconcnn.models.pixel_constrained.PixelConstrained instance batch : torch.Tensor mask_descriptors : list of mask_descriptor See utils.masks.MaskGenerator for allowed mask_descriptors. num_samples : int Number of samples to generate for a given image-mask combination. temp : float Temperature for sampling. verbose : bool If True prints progress information while generating images """ device = torch_device("cuda" if cuda_is_available() else "cpu") model.to(device) outputs = [] for i in range(batch.size(0)): outputs_per_img = [] for j in range(len(mask_descriptors)): if verbose: print("Generating samples for image {} using mask {}".format(i, mask_descriptors[j])) # Get image and mask combination img = batch[i:i+1] mask_generator = MaskGenerator(model.prior_net.img_size, mask_descriptors[j]) mask = mask_generator.get_masks(1) # Create conditional pixels which will be used to sample completions cond_pixels = get_repeated_conditional_pixels(img, mask, model.prior_net.num_colors, num_samples) cond_pixels = cond_pixels.to(device) samples, log_probs = model.sample(cond_pixels, return_likelihood=True, temp=temp) outputs_per_img.append({ "orig_img": img, "cond_pixels": cond_pixels, "mask": mask, "samples": samples, "log_probs": log_probs }) outputs.append(outputs_per_img) return outputs