Python scipy.concatenate() Examples
The following are 9
code examples of scipy.concatenate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: dataset_navcam.py From DEMUD with Apache License 2.0 | 6 votes |
def extend(self, extracted_features): # This method reads the pkl files in a folder and adds them to the # existing data for processing in the TCData class. (data, labels, feature_string, width, height, winsize, nbins) = extracted_features npixels = width * height xlabel = 'Grayscale intensity' ylabel = 'Probability' xvals = scipy.arange(self.data.shape[0]).reshape(-1,1) self.data = N.concatenate((self.data, data),axis=1) self.width = N.append(self.width, width) self.height = N.append(self.height, height) self.xvals = N.append(self.xvals, xvals) self.labels.extend(labels) self.img_label_split.extend([len(self.labels)]) self.data_split.extend([self.data.shape[1]])
Example #2
Source File: nomo_axis.py From pynomo with GNU General Public License v3.0 | 5 votes |
def find_log_ticks(start, stop): """ finds tick values for linear axis """ if (start < stop): min, max = start, stop else: min, max = stop, start # lists for ticks tick_0_list = [] tick_1_list = [] tick_2_list = [] max_decade = math.ceil(math.log10(max)) min_decade = math.floor(math.log10(min)) start_ax = None stop_ax = None for decade in scipy.arange(min_decade, max_decade + 1, 1): # for number in scipy.concatenate((scipy.arange(1,2,0.2),scipy.arange(2,3,0.5),scipy.arange(3,10,1))): for number in [1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3, 4, 5, 6, 7, 8, 9]: u = number * 10.0 ** decade if u >= min and u <= max: if start_ax == None: start_ax = number stop_ax = number if number == 1: tick_0_list.append(u) if number in [2, 3, 4, 5, 6, 7, 8, 9]: tick_1_list.append(u) if number in [1.2, 1.4, 1.6, 1.8, 2.5]: tick_2_list.append(u) # print tick_0_list # print tick_1_list # print tick_2_list return tick_0_list, tick_1_list, tick_2_list, start_ax, stop_ax
Example #3
Source File: callbacks.py From GPPVAE with Apache License 2.0 | 5 votes |
def _compose(orig, recon): _imgo = [] _imgr = [] for i in range(orig.shape[0]): _imgo.append(orig[i]) for i in range(orig.shape[0]): _imgr.append(recon[i]) _imgo = sp.concatenate(_imgo, 1) _imgr = sp.concatenate(_imgr, 1) _rv = sp.concatenate([_imgo, _imgr], 0) _rv = sp.clip(_rv, 0, 1) return _rv
Example #4
Source File: callbacks.py From GPPVAE with Apache License 2.0 | 5 votes |
def _compose_multi(imgs): _imgs = [] for i in range(len(imgs)): _imgs.append([]) for j in range(imgs[i].shape[0]): _imgs[i].append(imgs[i][j]) _imgs[i] = sp.concatenate(_imgs[i], 1) _rv = sp.concatenate(_imgs, 0) _rv = sp.clip(_rv, 0, 1) return _rv
Example #5
Source File: dataset_navcam.py From DEMUD with Apache License 2.0 | 5 votes |
def si_read_ppm(self, rawfilename, filename): # This function reads the ppm/jpg file and extracts the features if the # features pkl file doesn't exist. It is also compatible for extension # of the feauture vector and doesn't compute the already computed features new_feature_string = [] updated_feature = 0 data = N.array([], dtype=int) if os.path.exists(filename): pkl_f = open(filename, 'r') (data, labels, feature_string, width, height, winsize, nbins)= pickle.load(pkl_f) self.winsize = winsize self.nbins = nbins new_feature_string = list(feature_string) pkl_f.close() if not new_feature_string.count('sift'): updated_feature = 1 (sift_features, labels, width, height) = self.extract_sift(rawfilename, self.winsize, self.nbins) if data.size: data = scipy.concatenate((data.transpose(), sift_features.transpose()), 1).transpose() else: data = sift_features new_feature_string.append('sift') if updated_feature: outf = open(filename, 'w') pickle.dump((data, labels, new_feature_string, width, height, self.winsize, self.nbins),outf) outf.close() print 'Saved data to %s.' % filename return (data, labels, new_feature_string, width, height, self.winsize, self.nbins)
Example #6
Source File: polynomial.py From mirage with BSD 3-Clause "New" or "Revised" License | 4 votes |
def testpoly(): [x, y] = scipy.mgrid[0:10, 0:10] #print 'X' #print x #print 'Y' #print y u = scipy.zeros((10, 10)) v = scipy.zeros((10, 10)) # Random polynomials a0 = scipy.random.rand(1) a1 = 0.1*(scipy.random.rand(2)-0.5) a2 = 0.01*(scipy.random.rand(3)-0.5) a = scipy.concatenate((a0, a1)) a = scipy.concatenate((a, a2)) a[2] = 0.01*a[2] print('A coefficients') print(a) b0 = scipy.random.rand(1) b1 = 0.1*(scipy.random.rand(2)-0.5) b2 = 0.01*(scipy.random.rand(3)-0.5) b = scipy.concatenate((b0, b1)) b = scipy.concatenate((b, b2)) b[1] = 0.01*b[1] print('B coeffcicients') print(b) for i in range(10): for j in range(10): u[i, j] = poly(a, x[i, j], y[i, j], 2) #+ scipy.random.normal(0.0, 0.01) v[i, j] = poly(b, x[i, j], y[i, j], 2) #+ scipy.random.normal(0.0, 0.01) #print z s1 = polyFit2(u, x, y, 2) s2 = polyFit2(v, x, y, 2) print('S1', s1) print('S2', s2) uc = poly(s1, x, y, 2) vc = poly(s2, x, y, 2) P.figure(1) P.clf() P.grid(True) P.plot(u, v, 'gx') P.plot(uc, vc, 'r+')
Example #7
Source File: dataset_navcam.py From DEMUD with Apache License 2.0 | 4 votes |
def extract_sift(cls, rawfilename, winsize, nbins): """read_ppm(rawfilename, filename) Read in raw pixel data from rawfilename (.ppm). Create a histogram around each pixel to become the feature vector for that obsevation (pixel). Pickle the result and save it to filename. Note: does NOT update object fields. Follow this with a call to readin(). """ if cls._VL_SIFT_: # VLSIFT matlab im = Image.open(rawfilename) (width, height) = im.size mlab.bb_sift(N.array(im), 'temp.mat') sift_features = scipy.io.loadmat('temp.mat') kp = sift_features['f_'] sift_features = sift_features['d_'] sift_features = scipy.concatenate((sift_features.transpose(), kp[2:4].transpose()), 1).transpose() labels = []; for ikp in kp.transpose(): (x,y) = ikp[0:2] labels += ['(%d,%d)' % (y,x)] else: #Opencv SIFT img = cv2.imread(rawfilename) gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) height, width = gray.shape # Computing SIFT sift = cv2.SIFT(edgeThreshold = 3) kp, des = sift.detectAndCompute(gray,None) labels = [] sift_features = N.transpose(des) scale_angle = [] for ikp in kp: (x,y) = ikp.pt scale_angle.append([ikp.size/12, ikp.angle]) labels += ['(%d,%d)' % (y,x)] scale_angle = N.array(scale_angle) sift_features = scipy.concatenate((sift_features.transpose(), scale_angle), 1).transpose() return (sift_features, labels, width, height)
Example #8
Source File: dataset_navcam.py From DEMUD with Apache License 2.0 | 4 votes |
def extract_hist(cls, rawfilename, winsize, nbins): # This function extracts the histogram features from the image im = Image.open(rawfilename) (width, height) = im.size npixels = width * height pix = scipy.array(im) # Generate one feature vector (histogram) per pixel #winsize = 20 # for test.pgm #winsize = 0 # for RGB halfwin = int(winsize/2) bins = scipy.linspace(0, 255, nbins) # Only use windows that are fully populated mywidth = width-winsize myheight = height-winsize #data = scipy.zeros((nbins-1, mywidth * myheight)) #data = scipy.zeros((3*winsize*winsize, mywidth * myheight)) data = [] labels = [] # Pick up all windows, stepping by half of the window size for y in range(halfwin, height-halfwin, int(halfwin/2)): for x in range(halfwin, width-halfwin, int(halfwin/2)): # Read in data in row-major order ind = (y-halfwin)*mywidth + (x-halfwin) #data[:,ind] = \ # scipy.histogram(pix[y-halfwin:y+halfwin, # x-halfwin:x+halfwin], # bins)[0] # Just RGB #data[:,ind] = pix[y,x] # RGB window #data[:,ind] = pix[y-halfwin:y+halfwin,x-halfwin:x+halfwin].flat hist_features = TCData.extract_hist_subimg(pix[y-halfwin:y+halfwin,x-halfwin:x+halfwin]) if data == []: data = hist_features.reshape(-1,1) else: data = scipy.concatenate((data, hist_features.reshape(-1,1)),1) labels += ['(%d,%d)' % (y,x)] return (data, labels, width, height)
Example #9
Source File: dataset_navcam.py From DEMUD with Apache License 2.0 | 4 votes |
def read_ppm(self, rawfilename, filename): # This function reads the ppm/jpg file and extracts the features if the # features pkl file doesn't exist. It is also compatible for extension # of the feauture vector and doesn't compute the already computed features new_feature_string = [] updated_feature = 0 data = N.array([], dtype=int) if os.path.exists(filename): pkl_f = open(filename, 'r') (data, labels, feature_string, width, height, winsize, nbins)= pickle.load(pkl_f) self.winsize = winsize self.nbins = nbins new_feature_string = list(feature_string) pkl_f.close() if not new_feature_string.count('dsift'): updated_feature = 1 (sift_features, labels, width, height) = self.extract_dsift(rawfilename, self.winsize, self.nbins) if data.size: data = scipy.concatenate((data.transpose(), sift_features.transpose()), 1).transpose() else: data = sift_features new_feature_string.append('dsift') if not new_feature_string.count('histogram'): updated_feature = 1 (hist_features, labels, width, height) = self.extract_hist(rawfilename, self.winsize, self.nbins) hist_features = hist_features/(self.winsize) if data.size: data = scipy.concatenate((data.transpose(), hist_features.transpose()), 1).transpose() else: data = hist_features new_feature_string.append('histogram') ''' if not new_feature_string.count('position'): updated_feature = 1 position_features = [] for label in labels: (y,x) = map(int, label.strip('()').split(',')) position_features.append([x,y]) position_features = N.array(position_features) if data.size: data = scipy.concatenate((data.transpose(), position_features), 1).transpose() else: data = position_features new_feature_string.append('position') ''' if updated_feature: outf = open(filename, 'w') pickle.dump((data, labels, new_feature_string, width, height, self.winsize, self.nbins),outf) outf.close() print 'Saved data to %s.' % filename return (data, labels, new_feature_string, width, height, self.winsize, self.nbins)