Python keras.applications.xception.Xception() Examples
The following are 11
code examples of keras.applications.xception.Xception().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications.xception
, or try the search function
.
Example #1
Source File: keras_applications.py From spark-deep-learning with Apache License 2.0 | 6 votes |
def _imagenet_preprocess_input(x, input_shape): """ For ResNet50, VGG models. For InceptionV3 and Xception it's okay to use the keras version (e.g. InceptionV3.preprocess_input) as the code path they hit works okay with tf.Tensor inputs. The following was translated to tf ops from https://github.com/fchollet/keras/blob/fb4a0849cf4dc2965af86510f02ec46abab1a6a4/keras/applications/imagenet_utils.py#L52 It's a possibility to change the implementation in keras to look like the following and modified to work with BGR images (standard in Spark), but not doing it for now. """ # assuming 'BGR' # Zero-center by mean pixel mean = np.ones(input_shape + (3,), dtype=np.float32) mean[..., 0] = 103.939 mean[..., 1] = 116.779 mean[..., 2] = 123.68 return x - mean
Example #2
Source File: xception.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def get_model(session): # create the base pre-trained model base_model = Xception(weights=None, include_top=False, input_shape=(270, 480, 3)) # add a global spatial average pooling layer x = base_model.output x = GlobalAveragePooling2D()(x) # add a fully-connected layer x = Dense(1024, activation='relu')(x) # putput layer predictions = Dense(session.training_dataset_info['number_of_labels'], activation='softmax')(x) # model model = Model(inputs=base_model.input, outputs=predictions) learning_rate = 0.001 opt = keras.optimizers.adam(lr=learning_rate, decay=1e-5) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) return model
Example #3
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 6 votes |
def extract_Xception(tensor): from keras.applications.xception import Xception, preprocess_input return Xception(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #4
Source File: neuralnets.py From EmoPy with GNU Affero General Public License v3.0 | 6 votes |
def _get_base_model(self): """ :return: base model from Keras based on user-supplied model name """ if self.model_name == 'inception_v3': return InceptionV3(weights='imagenet', include_top=False) elif self.model_name == 'xception': return Xception(weights='imagenet', include_top=False) elif self.model_name == 'vgg16': return VGG16(weights='imagenet', include_top=False) elif self.model_name == 'vgg19': return VGG19(weights='imagenet', include_top=False) elif self.model_name == 'resnet50': return ResNet50(weights='imagenet', include_top=False) else: raise ValueError('Cannot find base model %s' % self.model_name)
Example #5
Source File: keras_applications.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def model(self, preprocessed, featurize): # Model provided by Keras. All cotributions by Keras are provided subject to the # MIT license located at https://github.com/fchollet/keras/blob/master/LICENSE. return xception.Xception(input_tensor=preprocessed, weights="imagenet", include_top=(not featurize))
Example #6
Source File: keras_applications.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def _testKerasModel(self, include_top): return xception.Xception(weights="imagenet", include_top=include_top)
Example #7
Source File: xception.py From transfer with MIT License | 5 votes |
def get_xception_model(img_dim): array_input = Input(shape=(img_dim, img_dim, 3)) xception = Xception(include_top=True, weights='imagenet', input_tensor=array_input, pooling='avg') return xception
Example #8
Source File: test_keras_applications.py From keras-onnx with MIT License | 5 votes |
def test_Xception(self): from keras.applications.xception import Xception model = Xception(include_top=True, weights='imagenet') res = run_image(model, self.model_files, img_path, atol=5e-3, target_size=299) self.assertTrue(*res)
Example #9
Source File: xception.py From crnn-lid with GNU General Public License v3.0 | 5 votes |
def create_model(input_shape, config): input_tensor = Input(shape=input_shape) # this assumes K.image_dim_ordering() == 'tf' xception_model = Xception(include_top=False, weights=None, input_tensor=input_tensor) print(xception_model.summary()) x = xception_model.output x = GlobalAveragePooling2D()(x) predictions = Dense(config["num_classes"], activation='softmax')(x) return Model(input=xception_model.input, output=predictions)
Example #10
Source File: models.py From Carla-RL with MIT License | 5 votes |
def model_base_Xception(input_shape): model = Xception(weights=None, include_top=False, input_shape=input_shape) # Grab last model layer and attach global average pooling layer x = model.output x = GlobalAveragePooling2D()(x) return model.input, x # First small CNN model
Example #11
Source File: test_bench.py From Keras-inference-time-optimizer with MIT License | 4 votes |
def get_tst_neural_net(type): model = None custom_objects = dict() if type == 'mobilenet_small': from keras.applications.mobilenet import MobileNet model = MobileNet((128, 128, 3), depth_multiplier=1, alpha=0.25, include_top=True, weights='imagenet') elif type == 'mobilenet': from keras.applications.mobilenet import MobileNet model = MobileNet((224, 224, 3), depth_multiplier=1, alpha=1.0, include_top=True, weights='imagenet') elif type == 'mobilenet_v2': from keras.applications.mobilenetv2 import MobileNetV2 model = MobileNetV2((224, 224, 3), depth_multiplier=1, alpha=1.4, include_top=True, weights='imagenet') elif type == 'resnet50': from keras.applications.resnet50 import ResNet50 model = ResNet50(input_shape=(224, 224, 3), include_top=True, weights='imagenet') elif type == 'inception_v3': from keras.applications.inception_v3 import InceptionV3 model = InceptionV3(input_shape=(299, 299, 3), include_top=True, weights='imagenet') elif type == 'inception_resnet_v2': from keras.applications.inception_resnet_v2 import InceptionResNetV2 model = InceptionResNetV2(input_shape=(299, 299, 3), include_top=True, weights='imagenet') elif type == 'xception': from keras.applications.xception import Xception model = Xception(input_shape=(299, 299, 3), include_top=True, weights='imagenet') elif type == 'densenet121': from keras.applications.densenet import DenseNet121 model = DenseNet121(input_shape=(224, 224, 3), include_top=True, weights='imagenet') elif type == 'densenet169': from keras.applications.densenet import DenseNet169 model = DenseNet169(input_shape=(224, 224, 3), include_top=True, weights='imagenet') elif type == 'densenet201': from keras.applications.densenet import DenseNet201 model = DenseNet201(input_shape=(224, 224, 3), include_top=True, weights='imagenet') elif type == 'nasnetmobile': from keras.applications.nasnet import NASNetMobile model = NASNetMobile(input_shape=(224, 224, 3), include_top=True, weights='imagenet') elif type == 'nasnetlarge': from keras.applications.nasnet import NASNetLarge model = NASNetLarge(input_shape=(331, 331, 3), include_top=True, weights='imagenet') elif type == 'vgg16': from keras.applications.vgg16 import VGG16 model = VGG16(input_shape=(224, 224, 3), include_top=False, pooling='avg', weights='imagenet') elif type == 'vgg19': from keras.applications.vgg19 import VGG19 model = VGG19(input_shape=(224, 224, 3), include_top=False, pooling='avg', weights='imagenet') elif type == 'multi_io': model = get_custom_multi_io_model() elif type == 'multi_model_layer_1': model = get_custom_model_with_other_model_as_layer() elif type == 'multi_model_layer_2': model = get_small_model_with_other_model_as_layer() elif type == 'Conv2DTranspose': model = get_Conv2DTranspose_model() elif type == 'RetinaNet': model, custom_objects = get_RetinaNet_model() elif type == 'conv3d_model': model = get_simple_3d_model() return model, custom_objects