Python keras.applications.xception.preprocess_input() Examples
The following are 15
code examples of keras.applications.xception.preprocess_input().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications.xception
, or try the search function
.
Example #1
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 6 votes |
def extract_Xception(tensor): from keras.applications.xception import Xception, preprocess_input return Xception(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #2
Source File: inference.py From Xception-with-Your-Own-Dataset with MIT License | 6 votes |
def main(args): # create model model = load_model(args.model) # load class names classes = [] with open(args.classes, 'r') as f: classes = list(map(lambda x: x.strip(), f.readlines())) # load an input image img = image.load_img(args.image, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # predict pred = model.predict(x)[0] result = [(classes[i], float(pred[i]) * 100.0) for i in range(len(pred))] result.sort(reverse=True, key=lambda x: x[1]) for i in range(args.top_n): (class_name, prob) = result[i] print("Top %d ====================" % (i + 1)) print("Class name: %s" % (class_name)) print("Probability: %.2f%%" % (prob))
Example #3
Source File: fine_tune.py From Xception-with-Your-Own-Dataset with MIT License | 6 votes |
def generate_from_paths_and_labels( input_paths, labels, batch_size, input_size=(299, 299)): num_samples = len(input_paths) while 1: perm = np.random.permutation(num_samples) input_paths = input_paths[perm] labels = labels[perm] for i in range(0, num_samples, batch_size): inputs = list(map( lambda x: image.load_img(x, target_size=input_size), input_paths[i:i+batch_size] )) inputs = np.array(list(map( lambda x: image.img_to_array(x), inputs ))) inputs = preprocess_input(inputs) yield (inputs, labels[i:i+batch_size])
Example #4
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_spimage_converter_module(self): """ spimage converter module must preserve original image """ img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg')) def exec_gfn_spimg_decode(spimg_dict, img_dtype): gfn = gfac.buildSpImageConverter('BGR', img_dtype) with IsolatedSession() as issn: feeds, fetches = issn.importGraphFunction(gfn, prefix="") feed_dict = dict( (tnsr, spimg_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds) img_out = issn.run(fetches[0], feed_dict=feed_dict) return img_out def check_image_round_trip(img_arr): spimg_dict = imageArrayToStruct(img_arr).asDict() spimg_dict['data'] = bytes(spimg_dict['data']) img_arr_out = exec_gfn_spimg_decode( spimg_dict, imageTypeByOrdinal(spimg_dict['mode']).dtype) self.assertTrue(np.all(img_arr_out == img_arr)) for fp in img_fpaths: img = load_img(fp) img_arr_byte = img_to_array(img).astype(np.uint8) check_image_round_trip(img_arr_byte) img_arr_float = img_to_array(img).astype(np.float32) check_image_round_trip(img_arr_float) img_arr_preproc = iv3.preprocess_input(img_to_array(img)) check_image_round_trip(img_arr_preproc)
Example #5
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_bare_keras_module(self): """ Keras GraphFunctions should give the same result as standard Keras models """ img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg')) for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']), (Xception, xcpt.preprocess_input, model_sizes['Xception']), (ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]: keras_model = model_gen(weights="imagenet") _preproc_img_list = [] for fpath in img_fpaths: img = load_img(fpath, target_size=target_size) # WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails img_arr = np.expand_dims(img_to_array(img), axis=0) _preproc_img_list.append(preproc_fn(img_arr)) imgs_input = np.vstack(_preproc_img_list) preds_ref = keras_model.predict(imgs_input) gfn_bare_keras = GraphFunction.fromKeras(keras_model) with IsolatedSession(using_keras=True) as issn: K.set_learning_phase(0) feeds, fetches = issn.importGraphFunction(gfn_bare_keras) preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input}) np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=self.featurizerCompareDigitsExact)
Example #6
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_pipeline(self): """ Pipeline should provide correct function composition """ img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg')) xcpt_model = Xception(weights="imagenet") stages = [('spimage', gfac.buildSpImageConverter('BGR', 'float32')), ('xception', GraphFunction.fromKeras(xcpt_model))] piped_model = GraphFunction.fromList(stages) for fpath in img_fpaths: target_size = model_sizes['Xception'] img = load_img(fpath, target_size=target_size) img_arr = np.expand_dims(img_to_array(img), axis=0) img_input = xcpt.preprocess_input(img_arr) preds_ref = xcpt_model.predict(img_input) spimg_input_dict = imageArrayToStruct(img_input).asDict() spimg_input_dict['data'] = bytes(spimg_input_dict['data']) with IsolatedSession() as issn: # Need blank import scope name so that spimg fields match the input names feeds, fetches = issn.importGraphFunction(piped_model, prefix="") feed_dict = dict( (tnsr, spimg_input_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds) preds_tgt = issn.run(fetches[0], feed_dict=feed_dict) # Uncomment the line below to see the graph # tfx.write_visualization_html(issn.graph, # NamedTemporaryFile(prefix="gdef", suffix=".html").name) np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=self.featurizerCompareDigitsExact)
Example #7
Source File: keras_applications.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def preprocess(self, inputImage): # Keras expects RGB order return inception_v3.preprocess_input(_reverseChannels(inputImage))
Example #8
Source File: keras_applications.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def preprocess(self, inputImage): # Keras expects RGB order return xception.preprocess_input(_reverseChannels(inputImage))
Example #9
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 5 votes |
def extract_VGG16(tensor): from keras.applications.vgg16 import VGG16, preprocess_input return VGG16(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #10
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 5 votes |
def extract_VGG19(tensor): from keras.applications.vgg19 import VGG19, preprocess_input return VGG19(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #11
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 5 votes |
def extract_Resnet50(tensor): from keras.applications.resnet50 import ResNet50, preprocess_input return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #12
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 5 votes |
def extract_InceptionV3(tensor): from keras.applications.inception_v3 import InceptionV3, preprocess_input return InceptionV3(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #13
Source File: pre_model.py From transfer with MIT License | 5 votes |
def val_pre_model(source_path, folder, img_dim, architechture): array_path = os.path.join(source_path, folder) pre_model_path = os.path.join(source_path, 'pre_model') shutil.rmtree(pre_model_path,ignore_errors=True) os.makedirs(pre_model_path) if architechture == 'resnet50': popped, pre_model = get_resnet_pre_model(img_dim) elif architechture == 'xception': popped, pre_model = get_xception_pre_model(img_dim) else: popped, pre_model = get_inception_v3_pre_model(img_dim) for (array, label, array_name, label_name) in tqdm(gen_array_from_dir(array_path)): if architechture == 'resnet50': array = resnet_preprocess_input(array[np.newaxis].astype(np.float32)) elif architechture == 'xception': array = xception_preprocess_input(array[np.newaxis].astype(np.float32)) else: array = inception_v3_preprocess_input(array[np.newaxis].astype(np.float32)) array_pre_model = np.squeeze(pre_model.predict(array, batch_size=1)) array_name = array_name.split('.')[0] label_name = label_name.split('.')[0] img_pre_model_path = os.path.join(pre_model_path, array_name) label_pre_model_path = os.path.join(pre_model_path, label_name) np.save(img_pre_model_path, array_pre_model) np.save(label_pre_model_path, label)
Example #14
Source File: predict_model.py From transfer with MIT License | 5 votes |
def multi_predict(aug_gen, models, architecture): predicted = [] for img, _ in aug_gen: if architecture == 'resnet50': img = resnet_preprocess_input(img[np.newaxis].astype(np.float32)) elif architecture == 'xception': img = xception_preprocess_input(img[np.newaxis].astype(np.float32)) else: img = inception_v3_preprocess_input(img[np.newaxis].astype(np.float32)) for model in models: predicted.append(model.predict(img)) predicted = np.array(predicted).sum(axis=0) pred_list = list(predicted[0]) return predicted, pred_list
Example #15
Source File: model.py From transfer with MIT License | 5 votes |
def gen_minibatches(array_dir, array_names, batch_size, architecture, final = False): array_names = list(array_names) while True: # in place shuffle np.random.shuffle(array_names) array_names_mb = array_names[:batch_size] arrays = [] labels = [] for array_name in array_names_mb: img_path = os.path.join(array_dir, array_name) array = np.load(img_path) if final: if architecture == 'resnet50': array = np.squeeze(resnet_preprocess_input(array[np.newaxis].astype(np.float32))) elif architecture == 'xception': array = np.squeeze(xception_preprocess_input(array[np.newaxis].astype(np.float32))) else: array = np.squeeze(inception_v3_preprocess_input(array[np.newaxis].astype(np.float32))) arrays.append(array) labels.append(np.load(img_path.replace('-img-','-label-'))) yield np.array(arrays), np.array(labels)