Python data_load.load_data() Examples
The following are 15
code examples of data_load.load_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data_load
, or try the search function
.
Example #1
Source File: synthesize.py From tacotron with Apache License 2.0 | 6 votes |
def synthesize(): if not os.path.exists(hp.sampledir): os.mkdir(hp.sampledir) # Load graph g = Graph(mode="synthesize"); print("Graph loaded") # Load data texts = load_data(mode="synthesize") saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!") # Feed Forward ## mel y_hat = np.zeros((texts.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r for j in tqdm.tqdm(range(200)): _y_hat = sess.run(g.y_hat, {g.x: texts, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] ## mag mags = sess.run(g.z_hat, {g.y_hat: y_hat}) for i, mag in enumerate(mags): print("File {}.wav is being generated ...".format(i+1)) audio = spectrogram2wav(mag) write(os.path.join(hp.sampledir, '{}.wav'.format(i+1)), hp.sr, audio)
Example #2
Source File: synthesize.py From tacotron with Apache License 2.0 | 6 votes |
def synthesize(): if not os.path.exists(hp.sampledir): os.mkdir(hp.sampledir) # Load graph g = Graph(mode="synthesize"); print("Graph loaded") # Load data texts = load_data(mode="synthesize") saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!") # Feed Forward ## mel y_hat = np.zeros((texts.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r for j in tqdm.tqdm(range(200)): _y_hat = sess.run(g.y_hat, {g.x: texts, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] ## mag mags = sess.run(g.z_hat, {g.y_hat: y_hat}) for i, mag in enumerate(mags): print("File {}.wav is being generated ...".format(i+1)) audio = spectrogram2wav(mag) write(os.path.join(hp.sampledir, '{}.wav'.format(i+1)), hp.sr, audio)
Example #3
Source File: copy_synth_SSRN_GL.py From ophelia with Apache License 2.0 | 6 votes |
def copy_synth_SSRN_GL(hp, outdir): safe_makedir(outdir) dataset = load_data(hp, mode="synthesis") fnames, texts = dataset['fpaths'], dataset['texts'] bases = [basename(fname) for fname in fnames] mels = [np.load(os.path.join(hp.coarse_audio_dir, base + '.npy')) for base in bases] lengths = [a.shape[0] for a in mels] mels = list2batch(mels, 0) g = SSRNGraph(hp, mode="synthesize"); print("Graph (ssrn) loaded") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ssrn_epoch = restore_latest_model_parameters(sess, hp, 'ssrn') print('Run SSRN...') Z = synth_mel2mag(hp, mels, g, sess) for i, mag in enumerate(Z): print("Working on %s"%(bases[i])) mag = mag[:lengths[i]*hp.r,:] ### trim to generated length wav = spectrogram2wav(hp, mag) soundfile.write(outdir + "/%s.wav"%(base), wav, hp.sr)
Example #4
Source File: test.py From sudoku with GNU General Public License v3.0 | 5 votes |
def test(): x, y = load_data(type="test") g = Graph(is_training=False) with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: # Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)) print("Restored!") # Get model name mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name if not os.path.exists('results'): os.mkdir('results') fout = 'results/{}.txt'.format(mname) import copy _preds = copy.copy(x) while 1: istarget, probs, preds = sess.run([g.istarget, g.probs, g.preds], {g.x:_preds, g.y: y}) probs = probs.astype(np.float32) preds = preds.astype(np.float32) probs *= istarget #(N, 9, 9) preds *= istarget #(N, 9, 9) probs = np.reshape(probs, (-1, 9*9)) #(N, 9*9) preds = np.reshape(preds, (-1, 9*9))#(N, 9*9) _preds = np.reshape(_preds, (-1, 9*9)) maxprob_ids = np.argmax(probs, axis=1) # (N, ) <- blanks of the most probable prediction maxprobs = np.max(probs, axis=1, keepdims=False) for j, (maxprob_id, maxprob) in enumerate(zip(maxprob_ids, maxprobs)): if maxprob != 0: _preds[j, maxprob_id] = preds[j, maxprob_id] _preds = np.reshape(_preds, (-1, 9, 9)) _preds = np.where(x==0, _preds, y) # # Fill in the non-blanks with correct numbers if np.count_nonzero(_preds) == _preds.size: break write_to_file(x.astype(np.int32), y, _preds.astype(np.int32), fout)
Example #5
Source File: test.py From vq-vae with Apache License 2.0 | 5 votes |
def test(): # Load data: two samples files, speaker_ids = load_data(mode="test") speaker_ids = speaker_ids[::-1] # swap # Parse x = np.zeros((2, 63488, 1), np.int32) for i, f in enumerate(files): f = np.load(f) length = min(63488, len(f)) x[i, :length, :] = f[:length] # Graph g = Graph("test"); print("Test Graph loaded") with tf.Session() as sess: saver = tf.train.Saver() # Restore saved variables ckpt = tf.train.latest_checkpoint(hp.logdir) if ckpt is not None: saver.restore(sess, ckpt) # Feed Forward y_hat = np.zeros((2, 63488, 1), np.int32) for j in tqdm(range(63488)): _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat, g.speaker_ids: speaker_ids}) _y_hat = np.expand_dims(_y_hat, -1) y_hat[:, j, :] = _y_hat[:, j, :] for i, y in tqdm(enumerate(y_hat)): audio = mu_law_decode(y) write(os.path.join(hp.sampledir, '{}.wav'.format(i + 1)), hp.sr, audio)
Example #6
Source File: eval.py From tacotron with Apache License 2.0 | 5 votes |
def eval(): # Load graph g = Graph(mode="eval"); print("Evaluation Graph loaded") # Load data fpaths, text_lengths, texts = load_data(mode="eval") # Parse text = np.fromstring(texts[0], np.int32) # (None,) fname, mel, mag = load_spectrograms(fpaths[0]) x = np.expand_dims(text, 0) # (1, None) y = np.expand_dims(mel, 0) # (1, None, n_mels*r) z = np.expand_dims(mag, 0) # (1, None, n_mfccs) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!") writer = tf.summary.FileWriter(hp.logdir, sess.graph) # Feed Forward ## mel y_hat = np.zeros((1, y.shape[1], y.shape[2]), np.float32) # hp.n_mels*hp.r for j in range(y.shape[1]): _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] ## mag merged, gs = sess.run([g.merged, g.global_step], {g.x:x, g.y:y, g.y_hat: y_hat, g.z: z}) writer.add_summary(merged, global_step=gs) writer.close()
Example #7
Source File: copy_synth_GL.py From ophelia with Apache License 2.0 | 5 votes |
def copy_synth_GL(hp, outdir): safe_makedir(outdir) dataset = load_data(hp, mode="synthesis") fnames, texts = dataset['fpaths'], dataset['texts'] bases = [basename(fname) for fname in fnames] for base in bases: print("Working on file %s"%(base)) mag = np.load(os.path.join(hp.full_audio_dir, base + '.npy')) wav = spectrogram2wav(hp, mag) soundfile.write(outdir + "/%s.wav"%(base), wav, hp.sr)
Example #8
Source File: prepare_attention_guides.py From ophelia with Apache License 2.0 | 5 votes |
def main_work(): ################################################# # ============= Process command line ============ a = ArgumentParser() a.add_argument('-c', dest='config', required=True, type=str) a.add_argument('-ncores', default=1, type=int, help='Number of cores for parallel processing') opts = a.parse_args() # =============================================== hp = load_config(opts.config) assert hp.attention_guide_dir dataset = load_data(hp) fpaths, text_lengths = dataset['fpaths'], dataset['text_lengths'] assert os.path.exists(hp.coarse_audio_dir) safe_makedir(hp.attention_guide_dir) executor = ProcessPoolExecutor(max_workers=opts.ncores) futures = [] for (fpath, text_length) in zip(fpaths, text_lengths): futures.append(executor.submit(proc, fpath, text_length, hp)) proc_list = [future.result() for future in tqdm.tqdm(futures)]
Example #9
Source File: convert.py From cross_vc with Apache License 2.0 | 5 votes |
def convert(): g = Graph("convert"); print("Training Graph loaded") mfccs = load_data("convert") with tf.Session() as sess: # Initialize all variables sess.run(tf.global_variables_initializer()) # Restore logdir = hp.logdir + "/train1" var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1') saver = tf.train.Saver(var_list=var_list) ckpt = tf.train.latest_checkpoint(logdir) if ckpt is not None: saver.restore(sess, ckpt) logdir = hp.logdir + "/train2" var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net2') +\ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training') saver2 = tf.train.Saver(var_list=var_list) ckpt = tf.train.latest_checkpoint(logdir) if ckpt is not None: saver2.restore(sess, ckpt) # Synthesize if not os.path.exists('50lang-output'): os.mkdir('50lang-output') mag_hats = sess.run(g.mag_hats, {g.mfccs: mfccs}) for i, mag_hat in enumerate(mag_hats): wav = spectrogram2wav(mag_hat) write('50lang-output/{}.wav'.format(i+1), hp.sr, wav)
Example #10
Source File: train1.py From cross_vc with Apache License 2.0 | 5 votes |
def eval1(): # Load data mfccs, phns = load_data(mode="eval1") # Graph g = Graph("eval1"); print("Evaluation Graph loaded") logdir = hp.logdir + "/train1" # Session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Restore saved variables var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1') +\ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training') saver = tf.train.Saver(var_list=var_list) ckpt = tf.train.latest_checkpoint(logdir) if ckpt is not None: saver.restore(sess, ckpt) # Writer writer = tf.summary.FileWriter(logdir, sess.graph) # Evaluation merged, gs = sess.run([g.merged, g.global_step], {g.mfccs: mfccs, g.phones: phns}) # Write summaries writer.add_summary(merged, global_step=gs) writer.close()
Example #11
Source File: synthesize.py From dc_tts with Apache License 2.0 | 4 votes |
def synthesize(): # Load data L = load_data("synthesize") # Load graph g = Graph(mode="synthesize"); print("Graph loaded") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Restore parameters var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel') saver1 = tf.train.Saver(var_list=var_list) saver1.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-1")) print("Text2Mel Restored!") var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs') saver2 = tf.train.Saver(var_list=var_list) saver2.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-2")) print("SSRN Restored!") # Feed Forward ## mel Y = np.zeros((len(L), hp.max_T, hp.n_mels), np.float32) prev_max_attentions = np.zeros((len(L),), np.int32) for j in tqdm(range(hp.max_T)): _gs, _Y, _max_attentions, _alignments = \ sess.run([g.global_step, g.Y, g.max_attentions, g.alignments], {g.L: L, g.mels: Y, g.prev_max_attentions: prev_max_attentions}) Y[:, j, :] = _Y[:, j, :] prev_max_attentions = _max_attentions[:, j] # Get magnitude Z = sess.run(g.Z, {g.Y: Y}) # Generate wav files if not os.path.exists(hp.sampledir): os.makedirs(hp.sampledir) for i, mag in enumerate(Z): print("Working on file", i+1) wav = spectrogram2wav(mag) write(hp.sampledir + "/{}.wav".format(i+1), hp.sr, wav)
Example #12
Source File: synthesize.py From kss with Apache License 2.0 | 4 votes |
def synthesize(): # Load data L = load_data("synthesize") # Load graph g = Graph(mode="synthesize"); print("Graph loaded") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Restore parameters var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel') saver1 = tf.train.Saver(var_list=var_list) saver1.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-1")) print("Text2Mel Restored!") var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs') saver2 = tf.train.Saver(var_list=var_list) saver2.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-2")) print("SSRN Restored!") # Feed Forward ## mel Y = np.zeros((len(L), hp.max_T, hp.n_mels), np.float32) prev_max_attentions = np.zeros((len(L),), np.int32) for j in tqdm(range(hp.max_T)): _gs, _Y, _max_attentions, _alignments = \ sess.run([g.global_step, g.Y, g.max_attentions, g.alignments], {g.L: L, g.mels: Y, g.prev_max_attentions: prev_max_attentions}) Y[:, j, :] = _Y[:, j, :] prev_max_attentions = _max_attentions[:, j] # Get magnitude Z = sess.run(g.Z, {g.Y: Y}) # Generate wav files if not os.path.exists(hp.sampledir): os.makedirs(hp.sampledir) for i, mag in enumerate(Z): print("Working on file", i+1) wav = spectrogram2wav(mag) write(hp.sampledir + "/{}.wav".format(i+1), hp.sr, wav)
Example #13
Source File: eval.py From word_ordering with Apache License 2.0 | 4 votes |
def eval(): # Load graph g = Graph(mode="test") print("Graph loaded") # Load batch _Y = load_data(mode="test") X = np.zeros((len(_Y), hp.maxlen)) Y = np.zeros((len(_Y), hp.maxlen)) for i, y in enumerate(_Y): y = np.fromstring(y, np.int32) Y[i][:len(y)] = y np.random.shuffle(y) X[i][:len(y)] = y word2idx, idx2word = g.word2idx, g.idx2word # Start session with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: # Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)) # Get model mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name # inference if not os.path.exists('results'): os.mkdir('results') with codecs.open("results/" + mname, "w", "utf-8") as fout: num_words, total_edit_distance = 0, 0 for i in range(0, len(Y), hp.batch_size): ### Get mini-batches x = X[i:i+hp.batch_size] y = Y[i:i+hp.batch_size] ### Autoregressive inference preds = np.zeros((hp.batch_size, hp.maxlen), np.int32) for j in range(hp.maxlen): _preds = sess.run(g.preds, {g.x: x, g.y: preds}) preds[:, j] = _preds[:, j] for xx, yy, pred in zip(x, y, preds): # sentence-wise inputs = " ".join(idx2word[idx] for idx in xx).replace("_", "").strip() expected = " ".join(idx2word[idx] for idx in yy).replace("_", "").strip() got = " ".join(idx2word[idx] for idx in pred[:len(inputs.split())]) edit_distance = distance.levenshtein(expected.split(), got.split()) total_edit_distance += edit_distance num_words += len(expected.split()) fout.write(u"Inputs : {}\n".format(inputs)) fout.write(u"Expected: {}\n".format(expected)) fout.write(u"Got : {}\n".format(got)) fout.write(u"WER : {}\n\n".format(edit_distance)) fout.write(u"Total WER: {}/{}={}\n".format(total_edit_distance, num_words, round(float(total_edit_distance) / num_words, 2)))
Example #14
Source File: evaluate.py From tacotron with Apache License 2.0 | 4 votes |
def evaluate(): # Load graph g = Graph(mode="evaluate"); print("Graph loaded") # Load data fpaths, _, texts = load_data(mode="evaluate") lengths = [len(t) for t in texts] maxlen = sorted(lengths, reverse=True)[0] new_texts = np.zeros((len(texts), maxlen), np.int32) for i, text in enumerate(texts): new_texts[i, :len(text)] = [idx for idx in text] #new_texts = np.split(new_texts, 2) new_texts = new_texts[:evaluate_wav_num] half_size = int(len(fpaths)/2) print(half_size) #new_fpaths = [fpaths[:half_size], fpaths[half_size:]] fpaths = fpaths[:evaluate_wav_num] saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Evaluate Model Restored!") """ err = 0.0 for i, t_split in enumerate(new_texts): y_hat = np.zeros((t_split.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r for j in tqdm.tqdm(range(200)): _y_hat = sess.run(g.y_hat, {g.x: t_split, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] mags = sess.run(g.z_hat, {g.y_hat: y_hat}) for k, mag in enumerate(mags): fname, mel_ans, mag_ans = load_spectrograms(new_fpaths[i][k]) print("File {} is being evaluated ...".format(fname)) audio = spectrogram2wav(mag) audio_ans = spectrogram2wav(mag_ans) err += calculate_mse(audio, audio_ans) err = err/float(len(fpaths)) print(err) """ # Feed Forward ## mel y_hat = np.zeros((new_texts.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r for j in tqdm.tqdm(range(200)): _y_hat = sess.run(g.y_hat, {g.x: new_texts, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] ## mag mags = sess.run(g.z_hat, {g.y_hat: y_hat}) err = 0.0 for i, mag in enumerate(mags): fname, mel_ans, mag_ans = load_spectrograms(fpaths[i]) print("File {} is being evaluated ...".format(fname)) #audio = spectrogram2wav(mag) #audio_ans = spectrogram2wav(mag_ans) #err += calculate_mse(audio, audio_ans) err += calculate_mse(mag, mag_ans) err = err/float(len(fpaths)) print(err) opf.write(hp.logdir + " spectrogram mse: " + str(err) + "\n")
Example #15
Source File: eval.py From neural_tokenizer with MIT License | 4 votes |
def eval(): # Load graph g = Graph(is_training=False) print("Graph loaded") # Load data X, Y = load_data(mode="test") # texts char2idx, idx2char = load_vocab() with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: # Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)) print("Restored!") # Get model mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name # Inference if not os.path.exists(hp.savedir): os.mkdir(hp.savedir) with open("{}/{}".format(hp.savedir, mname), 'w') as fout: results = [] baseline_results = [] for step in range(len(X) // hp.batch_size): x = X[step * hp.batch_size: (step + 1) * hp.batch_size] y = Y[step * hp.batch_size: (step + 1) * hp.batch_size] # predict characters preds = sess.run(g.preds, {g.x: x}) for xx, yy, pp in zip(x, y, preds): # sentence-wise expected = '' got = '' for xxx, yyy, ppp in zip(xx, yy, pp): # character-wise if xxx == 0: break else: got += idx2char.get(xxx, "*") expected += idx2char.get(xxx, "*") if ppp == 1: got += " " if yyy == 1: expected += " " # prediction results if ppp == yyy: results.append(1) else: results.append(0) # baseline results if yyy == 0: # no space baseline_results.append(1) else: baseline_results.append(0) fout.write("▌Expected: " + expected + "\n") fout.write("▌Got: " + got + "\n\n") fout.write( "Final Accuracy = %d/%d=%.4f\n" % (sum(results), len(results), float(sum(results)) / len(results))) fout.write( "Baseline Accuracy = %d/%d=%.4f" % (sum(baseline_results), len(baseline_results), float(sum(baseline_results)) / len(baseline_results)))