Python tensor2tensor.models.transformer.transformer_tiny() Examples
The following are 27
code examples of tensor2tensor.models.transformer.transformer_tiny().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensor2tensor.models.transformer
, or try the search function
.
Example #1
Source File: evolved_transformer_test.py From BERT with Apache License 2.0 | 6 votes |
def _create_greedy_infer_model(self): """Creates model for greedy inference testing. Returns: model: A t2t model. features: An map of string to tensor. """ model, features = get_model(transformer.transformer_tiny()) out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) return model, features
Example #2
Source File: evolved_transformer_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def _create_greedy_infer_model(self): """Creates model for greedy inference testing. Returns: model: A t2t model. features: An map of string to tensor. """ model, features = get_model(transformer.transformer_tiny()) out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) return model, features
Example #3
Source File: universal_transformer.py From BERT with Apache License 2.0 | 5 votes |
def universal_transformer_tiny(): hparams = transformer.transformer_tiny() hparams = update_hparams_for_universal_transformer(hparams) hparams.num_rec_steps = 8 return hparams
Example #4
Source File: universal_transformer_modified.py From Graph-Transformer with Apache License 2.0 | 5 votes |
def universal_transformer_tiny1(): hparams = transformer.transformer_tiny() hparams = update_hparams_for_universal_transformer(hparams) hparams.num_rec_steps = 8 return hparams
Example #5
Source File: score2perf_hparams.py From magenta with Apache License 2.0 | 5 votes |
def t_rel_len2048_dropout15_tiny(): """Hparams for LM with relative attention, tiny transformer.""" # hparams = transformer.transformer_base() hparams = transformer.transformer_tiny() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_dropout(hparams, 0.15) hparams.self_attention_type = "dot_product_relative_v2" # Need to specify num_hidden_layers hparams.attention_key_channels = 512 hparams.num_hidden_layers = 8 return hparams
Example #6
Source File: transformer_test.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def get_model(hparams=None, mode=tf.estimator.ModeKeys.TRAIN, has_input=True, model_cls=transformer.Transformer): if hparams is None: hparams = transformer.transformer_tiny() hparams.hidden_size = 8 hparams.filter_size = 32 hparams.num_heads = 1 hparams.layer_prepostprocess_dropout = 0.0 p_hparams = problem_hparams.test_problem_hparams(VOCAB_SIZE, VOCAB_SIZE, hparams) if not has_input: del p_hparams.modality["inputs"] hparams.problem_hparams = p_hparams inputs = -1 + np.random.random_integers( VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1)) targets = -1 + np.random.random_integers( VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1)) features = { "targets": tf.constant(targets, dtype=tf.int32, name="targets"), "target_space_id": tf.constant(1, dtype=tf.int32) } if has_input: features["inputs"] = tf.constant(inputs, dtype=tf.int32, name="inputs") return model_cls(hparams, mode, p_hparams), features
Example #7
Source File: universal_transformer.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def universal_transformer_tiny(): hparams = transformer.transformer_tiny() hparams = update_hparams_for_universal_transformer(hparams) hparams.num_rec_steps = 8 return hparams
Example #8
Source File: transformer_aux.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def transformer_aux_tiny(): """Set of hyperparameters.""" hparams = transformer.transformer_tiny() hparams.shared_embedding_and_softmax_weights = False hparams.add_hparam("shift_values", "1,2") return hparams
Example #9
Source File: transformer_test.py From BERT with Apache License 2.0 | 5 votes |
def get_model(hparams=None, mode=tf.estimator.ModeKeys.TRAIN, has_input=True, model_cls=transformer.Transformer): if hparams is None: hparams = transformer.transformer_tiny() hparams.hidden_size = 8 hparams.filter_size = 32 hparams.num_heads = 1 hparams.layer_prepostprocess_dropout = 0.0 p_hparams = problem_hparams.test_problem_hparams(VOCAB_SIZE, VOCAB_SIZE, hparams) if not has_input: del p_hparams.modality["inputs"] hparams.problem_hparams = p_hparams inputs = np.random.randint( VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1)) targets = np.random.randint( VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1)) features = { "targets": tf.constant(targets, dtype=tf.int32, name="targets"), "target_space_id": tf.constant(1, dtype=tf.int32) } if has_input: features["inputs"] = tf.constant(inputs, dtype=tf.int32, name="inputs") return model_cls(hparams, mode, p_hparams), features
Example #10
Source File: evolved_transformer_test.py From BERT with Apache License 2.0 | 5 votes |
def testBeamVsFast(self): model, features = get_model(transformer.transformer_tiny()) decode_length = DECODE_LENGTH out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) with tf.variable_scope(tf.get_variable_scope(), reuse=True): beam_result = model._beam_decode_slow( features, decode_length, beam_size=4, top_beams=1, alpha=1.0)["outputs"] fast_result = model._beam_decode( features, decode_length, beam_size=4, top_beams=1, alpha=1.0)["outputs"] with self.test_session(): beam_res = beam_result.eval() fast_res = fast_result.eval() self.assertAllClose(beam_res, fast_res)
Example #11
Source File: evolved_transformer_test.py From BERT with Apache License 2.0 | 5 votes |
def testSlowVsFastNoInput(self): model, features = get_model( transformer.transformer_tiny(), has_input=False) decode_length = DECODE_LENGTH out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) with tf.variable_scope(tf.get_variable_scope(), reuse=True): slow_result = model._slow_greedy_infer( features, decode_length)["outputs"] slow_result = tf.squeeze(slow_result, axis=[2, 3]) fast_result = model._greedy_infer(features, decode_length)["outputs"] with self.test_session(): slow_res = slow_result.eval() fast_res = fast_result.eval() self.assertEqual(slow_res.shape, (BATCH_SIZE, decode_length)) self.assertAllClose(slow_res, fast_res)
Example #12
Source File: evolved_transformer_test.py From BERT with Apache License 2.0 | 5 votes |
def testSlowVsFast(self): model, features = get_model(transformer.transformer_tiny()) decode_length = DECODE_LENGTH out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) with tf.variable_scope(tf.get_variable_scope(), reuse=True): greedy_result = model._slow_greedy_infer( features, decode_length)["outputs"] greedy_result = tf.squeeze(greedy_result, axis=[2, 3]) fast_result = model._greedy_infer(features, decode_length)["outputs"] with self.test_session(): greedy_res = greedy_result.eval() fast_res = fast_result.eval() self.assertEqual(fast_res.shape, (BATCH_SIZE, INPUT_LENGTH + decode_length)) self.assertAllClose(greedy_res, fast_res)
Example #13
Source File: transformer_parallel.py From BERT with Apache License 2.0 | 5 votes |
def transformer_tiny_bs3(): hparams = transformer.transformer_tiny() hparams.add_hparam("block_size", 3) return hparams
Example #14
Source File: transformer_parallel.py From BERT with Apache License 2.0 | 5 votes |
def transformer_tiny_bs2(): hparams = transformer.transformer_tiny() hparams.add_hparam("block_size", 2) return hparams
Example #15
Source File: transformer_parallel.py From BERT with Apache License 2.0 | 5 votes |
def transformer_tiny_bs1(): hparams = transformer.transformer_tiny() hparams.add_hparam("block_size", 1) return hparams
Example #16
Source File: universal_transformer.py From fine-lm with MIT License | 5 votes |
def universal_transformer_tiny(): hparams = transformer.transformer_tiny() hparams = update_hparams_for_universal_transformer(hparams) hparams.num_rec_steps = 8 return hparams
Example #17
Source File: transformer_aux.py From BERT with Apache License 2.0 | 5 votes |
def transformer_aux_tiny(): """Set of hyperparameters.""" hparams = transformer.transformer_tiny() hparams.shared_embedding_and_softmax_weights = False hparams.add_hparam("shift_values", "1,2") return hparams
Example #18
Source File: evolved_transformer_test.py From tensor2tensor with Apache License 2.0 | 5 votes |
def testBeamVsFast(self): model, features = get_model(transformer.transformer_tiny()) decode_length = DECODE_LENGTH out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) with tf.variable_scope(tf.get_variable_scope(), reuse=True): beam_result = model._beam_decode_slow( features, decode_length, beam_size=4, top_beams=1, alpha=1.0)["outputs"] fast_result = model._beam_decode( features, decode_length, beam_size=4, top_beams=1, alpha=1.0)["outputs"] with self.test_session(): beam_res = beam_result.eval() fast_res = fast_result.eval() self.assertAllClose(beam_res, fast_res)
Example #19
Source File: evolved_transformer_test.py From tensor2tensor with Apache License 2.0 | 5 votes |
def testSlowVsFastNoInput(self): model, features = get_model(transformer.transformer_tiny(), has_input=False) decode_length = DECODE_LENGTH out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) with tf.variable_scope(tf.get_variable_scope(), reuse=True): slow_result = model._slow_greedy_infer(features, decode_length)["outputs"] slow_result = tf.squeeze(slow_result, axis=[2, 3]) fast_result = model._greedy_infer(features, decode_length)["outputs"] with self.test_session(): slow_res = slow_result.eval() fast_res = fast_result.eval() self.assertEqual(slow_res.shape, (BATCH_SIZE, decode_length)) self.assertAllClose(slow_res, fast_res)
Example #20
Source File: evolved_transformer_test.py From tensor2tensor with Apache License 2.0 | 5 votes |
def testSlowVsFast(self): tf.set_random_seed(1234) model, features = get_model(transformer.transformer_tiny()) decode_length = DECODE_LENGTH out_logits, _ = model(features) out_logits = tf.squeeze(out_logits, axis=[2, 3]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]), labels=tf.reshape(features["targets"], [-1])) loss = tf.reduce_mean(loss) apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss) with self.test_session(): tf.global_variables_initializer().run() for _ in range(10): apply_grad.run() model.set_mode(tf.estimator.ModeKeys.PREDICT) with tf.variable_scope(tf.get_variable_scope(), reuse=True): greedy_result = model._slow_greedy_infer(features, decode_length)["outputs"] greedy_result = tf.squeeze(greedy_result, axis=[2, 3]) fast_result = model._greedy_infer(features, decode_length)["outputs"] with self.test_session(): greedy_res = greedy_result.eval() fast_res = fast_result.eval() self.assertEqual(fast_res.shape, (BATCH_SIZE, INPUT_LENGTH + decode_length)) self.assertAllClose(greedy_res, fast_res)
Example #21
Source File: evolved_transformer_test.py From tensor2tensor with Apache License 2.0 | 5 votes |
def testEvolvedTransformer(self): model, features = get_model(hparams=transformer.transformer_tiny()) logits, _ = model(features) with self.test_session() as session: session.run(tf.global_variables_initializer()) res = session.run(logits) self.assertEqual(res.shape, (BATCH_SIZE, TARGET_LENGTH, 1, 1, VOCAB_SIZE))
Example #22
Source File: transformer_parallel.py From tensor2tensor with Apache License 2.0 | 5 votes |
def transformer_tiny_bs3(): hparams = transformer.transformer_tiny() hparams.add_hparam("block_size", 3) return hparams
Example #23
Source File: transformer_parallel.py From tensor2tensor with Apache License 2.0 | 5 votes |
def transformer_tiny_bs2(): hparams = transformer.transformer_tiny() hparams.add_hparam("block_size", 2) return hparams
Example #24
Source File: transformer_parallel.py From tensor2tensor with Apache License 2.0 | 5 votes |
def transformer_tiny_bs1(): hparams = transformer.transformer_tiny() hparams.add_hparam("block_size", 1) return hparams
Example #25
Source File: universal_transformer.py From tensor2tensor with Apache License 2.0 | 5 votes |
def universal_transformer_tiny(): hparams = transformer.transformer_tiny() hparams = update_hparams_for_universal_transformer(hparams) hparams.num_rec_steps = 8 return hparams
Example #26
Source File: transformer_aux.py From tensor2tensor with Apache License 2.0 | 5 votes |
def transformer_aux_tiny(): """Set of hyperparameters.""" hparams = transformer.transformer_tiny() hparams.shared_embedding_and_softmax_weights = False hparams.add_hparam("shift_values", "1,2") return hparams
Example #27
Source File: transformer_test.py From fine-lm with MIT License | 5 votes |
def get_model(hparams=None, mode=tf.estimator.ModeKeys.TRAIN, has_input=True, model_cls=transformer.Transformer): if hparams is None: hparams = transformer.transformer_tiny() hparams.hidden_size = 8 hparams.filter_size = 32 hparams.num_heads = 1 hparams.layer_prepostprocess_dropout = 0.0 p_hparams = problem_hparams.test_problem_hparams(VOCAB_SIZE, VOCAB_SIZE) if not has_input: p_hparams.input_modality = {} hparams.problem_hparams = p_hparams inputs = -1 + np.random.random_integers( VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1)) targets = -1 + np.random.random_integers( VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1)) features = { "targets": tf.constant(targets, dtype=tf.int32, name="targets"), "target_space_id": tf.constant(1, dtype=tf.int32) } if has_input: features["inputs"] = tf.constant(inputs, dtype=tf.int32, name="inputs") return model_cls(hparams, mode, p_hparams), features