Python tensorboard.SummaryWriter() Examples
The following are 12
code examples of tensorboard.SummaryWriter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorboard
, or try the search function
.
Example #1
Source File: train.py From pytorch-bilstmcrf with MIT License | 6 votes |
def __init__(self, sargs, input_vocabs, label_vocab, *args, val_data=None, **kwargs): super(LSTMCRFTrainer, self).__init__(*args, **kwargs) self.args = sargs self.input_vocabs = input_vocabs self.label_vocab = label_vocab self.val_data = val_data self.writer = None if self.args.tensorboard: self.writer = T.SummaryWriter(self.args.save_dir) self.repeatables = { self.args.ckpt_period: self.save_checkpoint } if self.args.val: self.repeatables[self.args.val_period] = \ self.validate
Example #2
Source File: custom_callbacks.py From mxnet-ssd with MIT License | 6 votes |
def __init__(self, dist_logging_dir=None, scalar_logging_dir=None, logfile_path=None, batch_size=None, iter_monitor=0, frequent=None, prefix='ssd'): self.scalar_logging_dir = scalar_logging_dir self.dist_logging_dir = dist_logging_dir self.logfile_path = logfile_path self.batch_size = batch_size self.iter_monitor = iter_monitor self.frequent = frequent self.prefix = prefix self.batch = 0 self.line_idx = 0 try: from tensorboard import SummaryWriter self.dist_summary_writer = SummaryWriter(dist_logging_dir) self.scalar_summary_writer = SummaryWriter(scalar_logging_dir) except ImportError: logging.error('You can install tensorboard via `pip install tensorboard`.')
Example #3
Source File: custom_callbacks.py From mxnet-ssd with MIT License | 6 votes |
def __init__(self, logging_dir=None, prefix='val', images_path=None, class_names=None, batch_size=None, mean_pixels=None, det_thresh=0.5): self.logging_dir = logging_dir self.prefix = prefix if not os.path.exists(images_path): os.mkdir(images_path) self.images_path = images_path self.class_names = class_names self.batch_size = batch_size self.mean_pixels = mean_pixels self.det_thresh = det_thresh try: from tensorboard import SummaryWriter self.summary_writer = SummaryWriter(logging_dir) except ImportError: logging.error('You can install tensorboard via `pip install tensorboard`.')
Example #4
Source File: tensor_board.py From VideoSearchEngine with MIT License | 5 votes |
def create_writer(): return SummaryWriter(LOG_DIR)
Example #5
Source File: tensor_board.py From VideoSearchEngine with MIT License | 5 votes |
def create_writer(): return SummaryWriter(LOG_DIR)
Example #6
Source File: tensorboard.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def __init__(self, logging_dir, prefix=None): self.prefix = prefix try: from tensorboard import SummaryWriter self.summary_writer = SummaryWriter(logging_dir) except ImportError: logging.error('You can install tensorboard via `pip install tensorboard`.')
Example #7
Source File: test_summary_writer.py From tensorboard with Apache License 2.0 | 5 votes |
def test_log_scalar_summary(): logdir = './experiment/scalar' writer = SummaryWriter(logdir) for i in range(10): writer.add_scalar('test_scalar', i+1) writer.close()
Example #8
Source File: custom_callbacks.py From mxnet-ssd with MIT License | 5 votes |
def __init__(self, logging_dir=None, prefix='val', roc_path=None, class_names=None): self.prefix = prefix self.roc_path = roc_path self.class_names = class_names try: from tensorboard import SummaryWriter self.summary_writer = SummaryWriter(logging_dir) except ImportError: logging.error('You can install tensorboard via `pip install tensorboard`.')
Example #9
Source File: custom_callbacks.py From mxnet-ssd with MIT License | 5 votes |
def __init__(self, logging_dir, prefix=None, layers_list=None): self.prefix = prefix self.layers_list = layers_list try: from tensorboard import SummaryWriter self.summary_writer = SummaryWriter(logging_dir) except ImportError: logging.error('You can install tensorboard via `pip install tensorboard`.')
Example #10
Source File: tensorboard.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def __init__(self, logging_dir, prefix=None): self.prefix = prefix try: from tensorboard import SummaryWriter self.summary_writer = SummaryWriter(logging_dir) except ImportError: logging.error('You can install tensorboard via `pip install tensorboard`.')
Example #11
Source File: capsulenet.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 4 votes |
def do_training(num_epoch, optimizer, kvstore, learning_rate, model_prefix, decay): summary_writer = SummaryWriter(args.tblog_dir) lr_scheduler = SimpleLRScheduler(learning_rate) optimizer_params = {'lr_scheduler': lr_scheduler} module.init_params() module.init_optimizer(kvstore=kvstore, optimizer=optimizer, optimizer_params=optimizer_params) n_epoch = 0 while True: if n_epoch >= num_epoch: break train_iter.reset() val_iter.reset() loss_metric.reset() for n_batch, data_batch in enumerate(train_iter): module.forward_backward(data_batch) module.update() module.update_metric(loss_metric, data_batch.label) loss_metric.get_batch_log(n_batch) train_acc, train_loss, train_recon_err = loss_metric.get_name_value() loss_metric.reset() for n_batch, data_batch in enumerate(val_iter): module.forward(data_batch) module.update_metric(loss_metric, data_batch.label) loss_metric.get_batch_log(n_batch) val_acc, val_loss, val_recon_err = loss_metric.get_name_value() summary_writer.add_scalar('train_acc', train_acc, n_epoch) summary_writer.add_scalar('train_loss', train_loss, n_epoch) summary_writer.add_scalar('train_recon_err', train_recon_err, n_epoch) summary_writer.add_scalar('val_acc', val_acc, n_epoch) summary_writer.add_scalar('val_loss', val_loss, n_epoch) summary_writer.add_scalar('val_recon_err', val_recon_err, n_epoch) print('Epoch[%d] train acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, train_acc, train_loss, train_recon_err)) print('Epoch[%d] val acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, val_acc, val_loss, val_recon_err)) print('SAVE CHECKPOINT') module.save_checkpoint(prefix=model_prefix, epoch=n_epoch) n_epoch += 1 lr_scheduler.learning_rate = learning_rate * (decay ** n_epoch)
Example #12
Source File: capsulenet.py From SNIPER-mxnet with Apache License 2.0 | 4 votes |
def do_training(num_epoch, optimizer, kvstore, learning_rate, model_prefix, decay): summary_writer = SummaryWriter(args.tblog_dir) lr_scheduler = SimpleLRScheduler(learning_rate) optimizer_params = {'lr_scheduler': lr_scheduler} module.init_params() module.init_optimizer(kvstore=kvstore, optimizer=optimizer, optimizer_params=optimizer_params) n_epoch = 0 while True: if n_epoch >= num_epoch: break train_iter.reset() val_iter.reset() loss_metric.reset() for n_batch, data_batch in enumerate(train_iter): module.forward_backward(data_batch) module.update() module.update_metric(loss_metric, data_batch.label) loss_metric.get_batch_log(n_batch) train_acc, train_loss, train_recon_err = loss_metric.get_name_value() loss_metric.reset() for n_batch, data_batch in enumerate(val_iter): module.forward(data_batch) module.update_metric(loss_metric, data_batch.label) loss_metric.get_batch_log(n_batch) val_acc, val_loss, val_recon_err = loss_metric.get_name_value() summary_writer.add_scalar('train_acc', train_acc, n_epoch) summary_writer.add_scalar('train_loss', train_loss, n_epoch) summary_writer.add_scalar('train_recon_err', train_recon_err, n_epoch) summary_writer.add_scalar('val_acc', val_acc, n_epoch) summary_writer.add_scalar('val_loss', val_loss, n_epoch) summary_writer.add_scalar('val_recon_err', val_recon_err, n_epoch) print('Epoch[%d] train acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, train_acc, train_loss, train_recon_err)) print('Epoch[%d] val acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, val_acc, val_loss, val_recon_err)) print('SAVE CHECKPOINT') module.save_checkpoint(prefix=model_prefix, epoch=n_epoch) n_epoch += 1 lr_scheduler.learning_rate = learning_rate * (decay ** n_epoch)