Python networkx.to_directed() Examples
The following are 13
code examples of networkx.to_directed().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: test_graphviews.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUp(self): self.G = nx.path_graph(9) self.DG = nx.path_graph(9, create_using=nx.DiGraph()) self.MG = nx.path_graph(9, create_using=nx.MultiGraph()) self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph()) self.Gv = nx.to_undirected(self.DG) self.DGv = nx.to_directed(self.G) self.MGv = nx.to_undirected(self.MDG) self.MDGv = nx.to_directed(self.MG) self.Rv = self.DG.reverse() self.MRv = self.MDG.reverse() self.graphs = [self.G, self.DG, self.MG, self.MDG, self.Gv, self.DGv, self.MGv, self.MDGv, self.Rv, self.MRv] for G in self.graphs: G.edges, G.nodes, G.degree
Example #2
Source File: test_graphviews.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def setUp(self): self.G = nx.path_graph(9) self.DG = nx.path_graph(9, create_using=nx.DiGraph()) self.MG = nx.path_graph(9, create_using=nx.MultiGraph()) self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph()) self.Gv = nx.to_undirected(self.DG) self.DGv = nx.to_directed(self.G) self.MGv = nx.to_undirected(self.MDG) self.MDGv = nx.to_directed(self.MG) self.Rv = self.DG.reverse() self.MRv = self.MDG.reverse() self.graphs = [self.G, self.DG, self.MG, self.MDG, self.Gv, self.DGv, self.MGv, self.MDGv, self.Rv, self.MRv] for G in self.graphs: G.edges, G.nodes, G.degree
Example #3
Source File: test_graphviews.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setup(self): self.G = nx.path_graph(9) self.dv = nx.to_directed(self.G) self.MG = nx.path_graph(9, create_using=nx.MultiGraph()) self.Mdv = nx.to_directed(self.MG)
Example #4
Source File: test_graphviews.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_already_directed(self): dd = nx.to_directed(self.dv) Mdd = nx.to_directed(self.Mdv) assert_edges_equal(dd.edges, self.dv.edges) assert_edges_equal(Mdd.edges, self.Mdv.edges)
Example #5
Source File: test_graphviews.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_subgraph_todirected(self): SG = nx.induced_subgraph(self.G, [4, 5, 6]) SSG = SG.to_directed() assert_equal(sorted(SSG), [4, 5, 6]) assert_equal(sorted(SSG.edges), [(4, 5), (5, 4), (5, 6), (6, 5)])
Example #6
Source File: test_graphviews.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def setup(self): self.G = nx.path_graph(9) self.dv = nx.to_directed(self.G) self.MG = nx.path_graph(9, create_using=nx.MultiGraph()) self.Mdv = nx.to_directed(self.MG)
Example #7
Source File: test_graphviews.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_already_directed(self): dd = nx.to_directed(self.dv) Mdd = nx.to_directed(self.Mdv) assert_edges_equal(dd.edges, self.dv.edges) assert_edges_equal(Mdd.edges, self.Mdv.edges)
Example #8
Source File: test_graphviews.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_subgraph_todirected(self): SG = nx.induced_subgraph(self.G, [4, 5, 6]) SSG = SG.to_directed() assert_equal(sorted(SSG), [4, 5, 6]) assert_equal(sorted(SSG.edges), [(4, 5), (5, 4), (5, 6), (6, 5)])
Example #9
Source File: preprocess.py From EvalNE with MIT License | 4 votes |
def save_graph(G, output_path, delimiter=',', write_stats=True, write_weights=False, write_dir=True): r""" Saves a graph to a file as an edgelist of weighted edgelist. If the stats parameter is set to True the file will include several lines containing the same basic graph statistics as provided by the get_stats function. For undirected graphs, the method stores both directions of every edge. Parameters ---------- G : graph A NetworkX graph output_path : file or string File or filename to write. If a file is provided, it must be opened in 'wb' mode. delimiter : string, optional The string used to separate values. Default is ','. write_stats : bool, optional Sets if graph statistics should be added to the edgelist or not. Default is True. write_weights : bool, optional If True data will be stored as weighted edgelist (e.g. triplets src, dst, weight) otherwise as normal edgelist. If the graph edges have no weight attribute and this parameter is set to True, a weight of 1 will be assigned to each edge. Default is False. write_dir : bool, optional This option is only relevant for undirected graphs. If False, the graph will be stored with a single direction of the edges. If True, both directions of edges will be stored. Default is True. """ # Write the graph stats in the file if required if write_stats: get_stats(G, output_path) # Open the file where data should be stored f = open(output_path, 'a+b') # Write the graph to a file and use both edge directions if graph is undirected if G.is_directed(): # Store edgelist if write_weights: J = nx.DiGraph() J.add_weighted_edges_from(G.edges.data('weight', 1)) nx.write_weighted_edgelist(J, f, delimiter=delimiter) else: nx.write_edgelist(G, f, delimiter=delimiter, data=False) else: if write_dir: H = nx.to_directed(G) J = nx.DiGraph() else: H = G J = nx.DiGraph() # Store edgelist if write_weights: J.add_weighted_edges_from(H.edges.data('weight', 1)) nx.write_weighted_edgelist(J, f, delimiter=delimiter) else: nx.write_edgelist(H, f, delimiter=delimiter, data=False)
Example #10
Source File: community.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 4 votes |
def caveman_graph(l, k): """Returns a caveman graph of ``l`` cliques of size ``k``. Parameters ---------- l : int Number of cliques k : int Size of cliques Returns ------- G : NetworkX Graph caveman graph Notes ----- This returns an undirected graph, it can be converted to a directed graph using :func:`nx.to_directed`, or a multigraph using ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is described in [1]_ and it is unclear which of the directed generalizations is most useful. Examples -------- >>> G = nx.caveman_graph(3, 3) See also -------- connected_caveman_graph References ---------- .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. """ # l disjoint cliques of size k G = nx.empty_graph(l*k) G.name = "caveman_graph(%s,%s)" % (l*k, k) if k > 1: for start in range(0, l*k, k): edges = itertools.combinations(range(start, start+k), 2) G.add_edges_from(edges) return G
Example #11
Source File: community.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 4 votes |
def connected_caveman_graph(l, k): """Returns a connected caveman graph of ``l`` cliques of size ``k``. The connected caveman graph is formed by creating ``n`` cliques of size ``k``, then a single edge in each clique is rewired to a node in an adjacent clique. Parameters ---------- l : int number of cliques k : int size of cliques Returns ------- G : NetworkX Graph connected caveman graph Notes ----- This returns an undirected graph, it can be converted to a directed graph using :func:`nx.to_directed`, or a multigraph using ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is described in [1]_ and it is unclear which of the directed generalizations is most useful. Examples -------- >>> G = nx.connected_caveman_graph(3, 3) References ---------- .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. """ G = nx.caveman_graph(l, k) G.name = "connected_caveman_graph(%s,%s)" % (l, k) for start in range(0, l*k, k): G.remove_edge(start, start+1) G.add_edge(start, (start-1) % (l*k)) return G
Example #12
Source File: community.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def caveman_graph(l, k): """Returns a caveman graph of `l` cliques of size `k`. Parameters ---------- l : int Number of cliques k : int Size of cliques Returns ------- G : NetworkX Graph caveman graph Notes ----- This returns an undirected graph, it can be converted to a directed graph using :func:`nx.to_directed`, or a multigraph using ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is described in [1]_ and it is unclear which of the directed generalizations is most useful. Examples -------- >>> G = nx.caveman_graph(3, 3) See also -------- connected_caveman_graph References ---------- .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. """ # l disjoint cliques of size k G = nx.empty_graph(l * k) if k > 1: for start in range(0, l * k, k): edges = itertools.combinations(range(start, start + k), 2) G.add_edges_from(edges) return G
Example #13
Source File: community.py From aws-kube-codesuite with Apache License 2.0 | 4 votes |
def caveman_graph(l, k): """Returns a caveman graph of `l` cliques of size `k`. Parameters ---------- l : int Number of cliques k : int Size of cliques Returns ------- G : NetworkX Graph caveman graph Notes ----- This returns an undirected graph, it can be converted to a directed graph using :func:`nx.to_directed`, or a multigraph using ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is described in [1]_ and it is unclear which of the directed generalizations is most useful. Examples -------- >>> G = nx.caveman_graph(3, 3) See also -------- connected_caveman_graph References ---------- .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. """ # l disjoint cliques of size k G = nx.empty_graph(l * k) if k > 1: for start in range(0, l * k, k): edges = itertools.combinations(range(start, start + k), 2) G.add_edges_from(edges) return G