Python networkx.to_numpy_array() Examples
The following are 30
code examples of networkx.to_numpy_array().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: salts_solution.py From esoteric-python-challenges with GNU General Public License v3.0 | 8 votes |
def deobfuscator(dict_of_dicts): #====Work backwards==== #Build graph from dict_of_dicts: graph_from_dict = nx.DiGraph(dict_of_dicts) #Get adjacency matrix of graph graph_array = nx.to_numpy_array(graph_from_dict) #Change 1's to 255's to save as an image graph_array[graph_array == 1] = 255 image_from_array = Image.fromarray(graph_array).convert("L") #We can send the array directly to OCR, but I like to see the image. image_from_array.save("obfuscated.png") #Run OCR on our image return pytesseract.image_to_string("obfuscated.png")
Example #2
Source File: sample.py From strawberryfields with Apache License 2.0 | 6 votes |
def seed(value: Optional[int]) -> None: """Seed for random number generators. Wrapper function for `numpy.random.seed <https://docs.scipy.org/doc/numpy//reference/generated /numpy.random.seed.html>`_ to seed all NumPy-based random number generators. This allows for repeatable sampling. **Example usage:** >>> g = nx.erdos_renyi_graph(5, 0.7) >>> a = nx.to_numpy_array(g) >>> seed(1967) >>> sample(a, 3, 4) [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 0, 0, 0]] >>> seed(1967) >>> sample(a, 3, 4) [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 0, 0, 0]] Args: value (int): random seed """ np.random.seed(value)
Example #3
Source File: similarity.py From strawberryfields with Apache License 2.0 | 6 votes |
def _get_state(graph: nx.Graph, n_mean: float = 5, loss: float = 0.0) -> BaseGaussianState: r"""Embeds the input graph into a GBS device and returns the corresponding Gaussian state. """ modes = graph.order() A = nx.to_numpy_array(graph) mean_photon_per_mode = n_mean / float(modes) p = sf.Program(modes) # pylint: disable=expression-not-assigned with p.context as q: sf.ops.GraphEmbed(A, mean_photon_per_mode=mean_photon_per_mode) | q if loss: for _q in q: sf.ops.LossChannel(1 - loss) | _q eng = sf.LocalEngine(backend="gaussian") return eng.run(p).state
Example #4
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_dtype_int_multigraph(self): """Test that setting dtype int actually gives an integer array. For more information, see GitHub pull request #1363. """ G = nx.MultiGraph(nx.complete_graph(3)) A = nx.to_numpy_array(G, dtype=int) assert_equal(A.dtype, int)
Example #5
Source File: test_utils.py From graspy with Apache License 2.0 | 5 votes |
def test_lcc_numpy(self): expected_lcc_matrix = np.array( [ [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 1], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], ] ) expected_nodelist = np.array([0, 1, 2, 3, 5]) g = nx.DiGraph() [g.add_node(i) for i in range(1, 7)] g.add_edge(1, 2) g.add_edge(1, 3) g.add_edge(3, 4) g.add_edge(3, 4) g.add_edge(3, 6) g.add_edge(6, 3) g.add_edge(4, 2) g = nx.to_numpy_array(g) lcc_matrix, nodelist = gus.get_lcc(g, return_inds=True) np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix) np.testing.assert_array_equal(nodelist, expected_nodelist) lcc_matrix = gus.get_lcc(g) np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix)
Example #6
Source File: test_utils.py From graspy with Apache License 2.0 | 5 votes |
def test_multigraph_lcc_numpystack(self): expected_g_matrix = np.array( [[0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0]] ) expected_f_matrix = np.array( [[0, 1, 0, 0], [1, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0]] ) expected_mats = [expected_f_matrix, expected_g_matrix] expected_nodelist = np.array([0, 2, 3, 5]) g = nx.DiGraph() [g.add_node(i) for i in range(1, 7)] g.add_edge(1, 3) g.add_edge(3, 4) g.add_edge(3, 4) g.add_edge(3, 6) g.add_edge(6, 3) g.add_edge(4, 2) f = g.copy() f.add_edge(5, 4) f.remove_edge(4, 2) f.add_edge(3, 1) f = nx.to_numpy_array(f) g = nx.to_numpy_array(g) lccs, nodelist = gus.get_multigraph_intersect_lcc( np.stack([f, g]), return_inds=True ) for i, graph in enumerate(lccs): np.testing.assert_array_equal(graph, expected_mats[i]) np.testing.assert_array_equal(nodelist, expected_nodelist) for i, graph in enumerate(lccs): np.testing.assert_array_equal(graph, expected_mats[i])
Example #7
Source File: test_utils.py From graspy with Apache License 2.0 | 5 votes |
def test_multigraph_lcc_numpylist(self): expected_g_matrix = np.array( [[0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0]] ) expected_f_matrix = np.array( [[0, 1, 0, 0], [1, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0]] ) expected_mats = [expected_f_matrix, expected_g_matrix] expected_nodelist = np.array([0, 2, 3, 5]) g = nx.DiGraph() [g.add_node(i) for i in range(1, 7)] g.add_edge(1, 3) g.add_edge(3, 4) g.add_edge(3, 4) g.add_edge(3, 6) g.add_edge(6, 3) g.add_edge(4, 2) f = g.copy() f.add_edge(5, 4) f.remove_edge(4, 2) f.add_edge(3, 1) f = nx.to_numpy_array(f) g = nx.to_numpy_array(g) lccs, nodelist = gus.get_multigraph_intersect_lcc([f, g], return_inds=True) for i, graph in enumerate(lccs): np.testing.assert_array_equal(graph, expected_mats[i]) np.testing.assert_array_equal(nodelist, expected_nodelist) lccs = gus.get_multigraph_intersect_lcc([f, g], return_inds=False) for i, graph in enumerate(lccs): np.testing.assert_array_equal(graph, expected_mats[i])
Example #8
Source File: test_utils.py From graspy with Apache License 2.0 | 5 votes |
def test_multigraph_lcc_networkx(self): expected_g_matrix = np.array( [[0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0]] ) expected_f_matrix = np.array( [[0, 1, 0, 0], [1, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0]] ) expected_mats = [expected_f_matrix, expected_g_matrix] expected_nodelist = np.array([1, 3, 4, 6]) g = nx.DiGraph() [g.add_node(i) for i in range(1, 7)] g.add_edge(1, 3) g.add_edge(3, 4) g.add_edge(3, 4) g.add_edge(3, 6) g.add_edge(6, 3) g.add_edge(4, 2) f = g.copy() f.add_edge(5, 4) f.remove_edge(4, 2) f.add_edge(3, 1) lccs, nodelist = gus.get_multigraph_intersect_lcc([f, g], return_inds=True) for i, graph in enumerate(lccs): np.testing.assert_array_equal(nx.to_numpy_array(graph), expected_mats[i]) np.testing.assert_array_equal(nodelist, expected_nodelist) lccs = gus.get_multigraph_intersect_lcc([f, g], return_inds=False) for i, graph in enumerate(lccs): np.testing.assert_array_equal(nx.to_numpy_array(graph), expected_mats[i])
Example #9
Source File: lap.py From BioNEV with MIT License | 5 votes |
def __init__(self, graph, rep_size=128): self.g = graph self.node_size = self.g.G.number_of_nodes() self.rep_size = rep_size self.adj_mat = nx.to_numpy_array(self.g.G) self.vectors = {} self.embeddings = self.get_train() look_back = self.g.look_back_list for i, embedding in enumerate(self.embeddings): self.vectors[look_back[i]] = embedding
Example #10
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_identity_graph_array(self): "Conversion from graph to array to graph." A = nx.to_numpy_array(self.G1) self.identity_conversion(self.G1, A, nx.Graph())
Example #11
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_identity_digraph_array(self): """Conversion from digraph to array to digraph.""" A = nx.to_numpy_array(self.G2) self.identity_conversion(self.G2, A, nx.DiGraph())
Example #12
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_identity_weighted_graph_array(self): """Conversion from weighted graph to array to weighted graph.""" A = nx.to_numpy_array(self.G3) self.identity_conversion(self.G3, A, nx.Graph())
Example #13
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_identity_weighted_digraph_array(self): """Conversion from weighted digraph to array to weighted digraph.""" A = nx.to_numpy_array(self.G4) self.identity_conversion(self.G4, A, nx.DiGraph())
Example #14
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nodelist(self): """Conversion from graph to array to graph with nodelist.""" P4 = path_graph(4) P3 = path_graph(3) nodelist = list(P3) A = nx.to_numpy_array(P4, nodelist=nodelist) GA = nx.Graph(A) self.assert_equal(GA, P3) # Make nodelist ambiguous by containing duplicates. nodelist += [nodelist[0]] assert_raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
Example #15
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_numpy_multigraph(self): G = nx.MultiGraph() G.add_edge(1, 2, weight=7) G.add_edge(1, 2, weight=70) A = nx.to_numpy_array(G) assert_equal(A[1, 0], 77) A = nx.to_numpy_array(G, multigraph_weight=min) assert_equal(A[1, 0], 7) A = nx.to_numpy_array(G, multigraph_weight=max) assert_equal(A[1, 0], 70)
Example #16
Source File: test_convert_numpy.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_dtype_int_graph(self): """Test that setting dtype int actually gives an integer array. For more information, see GitHub pull request #1363. """ G = nx.complete_graph(3) A = nx.to_numpy_array(G, dtype=int) assert_equal(A.dtype, int)
Example #17
Source File: test_utils.py From graspy with Apache License 2.0 | 5 votes |
def test_graphin(self): G = nx.from_numpy_array(self.A) np.testing.assert_array_equal(nx.to_numpy_array(G), gus.import_graph(G))
Example #18
Source File: test_layout.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_adjacency_interface_numpy(self): A = nx.to_numpy_array(self.Gs) pos = nx.drawing.layout._fruchterman_reingold(A) assert_equal(pos.shape, (6, 2)) pos = nx.drawing.layout._fruchterman_reingold(A, dim=3) assert_equal(pos.shape, (6, 3))
Example #19
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_identity_graph_array(self): "Conversion from graph to array to graph." A = nx.to_numpy_array(self.G1) self.identity_conversion(self.G1, A, nx.Graph())
Example #20
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_identity_digraph_array(self): """Conversion from digraph to array to digraph.""" A = nx.to_numpy_array(self.G2) self.identity_conversion(self.G2, A, nx.DiGraph())
Example #21
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_identity_weighted_graph_array(self): """Conversion from weighted graph to array to weighted graph.""" A = nx.to_numpy_array(self.G3) self.identity_conversion(self.G3, A, nx.Graph())
Example #22
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_identity_weighted_digraph_array(self): """Conversion from weighted digraph to array to weighted digraph.""" A = nx.to_numpy_array(self.G4) self.identity_conversion(self.G4, A, nx.DiGraph())
Example #23
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nodelist(self): """Conversion from graph to array to graph with nodelist.""" P4 = path_graph(4) P3 = path_graph(3) nodelist = list(P3) A = nx.to_numpy_array(P4, nodelist=nodelist) GA = nx.Graph(A) self.assert_equal(GA, P3) # Make nodelist ambiguous by containing duplicates. nodelist += [nodelist[0]] assert_raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
Example #24
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_numpy_multigraph(self): G = nx.MultiGraph() G.add_edge(1, 2, weight=7) G.add_edge(1, 2, weight=70) A = nx.to_numpy_array(G) assert_equal(A[1, 0], 77) A = nx.to_numpy_array(G, multigraph_weight=min) assert_equal(A[1, 0], 7) A = nx.to_numpy_array(G, multigraph_weight=max) assert_equal(A[1, 0], 70)
Example #25
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_dtype_int_graph(self): """Test that setting dtype int actually gives an integer array. For more information, see GitHub pull request #1363. """ G = nx.complete_graph(3) A = nx.to_numpy_array(G, dtype=int) assert_equal(A.dtype, int)
Example #26
Source File: test_convert_numpy.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_dtype_int_multigraph(self): """Test that setting dtype int actually gives an integer array. For more information, see GitHub pull request #1363. """ G = nx.MultiGraph(nx.complete_graph(3)) A = nx.to_numpy_array(G, dtype=int) assert_equal(A.dtype, int)
Example #27
Source File: lap.py From OpenNE with MIT License | 5 votes |
def __init__(self, graph, rep_size=128): self.g = graph self.node_size = self.g.G.number_of_nodes() self.rep_size = rep_size self.adj_mat = nx.to_numpy_array(self.g.G) self.vectors = {} self.embeddings = self.get_train() look_back = self.g.look_back_list for i, embedding in enumerate(self.embeddings): self.vectors[look_back[i]] = embedding
Example #28
Source File: batch_utils.py From gnn-comparison with GNU General Public License v3.0 | 5 votes |
def mock_batch(batch_size): """construct pyG batch""" graphs = [] while len(graphs) < batch_size: G = nx.erdos_renyi_graph(np.random.choice([300, 500]), 0.5) if G.number_of_edges() > 1: graphs.append(G) adjs = [torch.from_numpy(nx.to_numpy_array(G)) for G in graphs] graph_data = [dense_to_sparse(A) for A in adjs] data_list = [Data(x=x, edge_index=e) for (e, x) in graph_data] return Batch.from_data_list(data_list)
Example #29
Source File: graph.py From gnn-comparison with GNU General Public License v3.0 | 5 votes |
def get_edge_index(self): adj = torch.Tensor(nx.to_numpy_array(self)) edge_index, _ = dense_to_sparse(adj) return edge_index
Example #30
Source File: test_decompositions.py From strawberryfields with Apache License 2.0 | 5 votes |
def test_real_degenerate(self): """Verify that the Takagi decomposition returns a matrix that is unitary and results in a correct decomposition when input a real but highly degenerate matrix. This test uses the adjacency matrix of a balanced tree graph.""" g = nx.balanced_tree(2, 4) a = nx.to_numpy_array(g) rl, U = dec.takagi(a) assert np.allclose(U @ U.conj().T, np.eye(len(a))) assert np.allclose(U @ np.diag(rl) @ U.T, a)