Python networkx.is_chordal() Examples

The following are 15 code examples of networkx.is_chordal(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module networkx , or try the search function .
Example #1
Source File: graph_utils.py    From metal with Apache License 2.0 6 votes vote down vote up
def get_clique_tree(nodes, edges):
    """Given a set of int nodes i and edges (i,j), returns an nx.Graph object G
    which is a clique tree, where:
        - G.node[i]['members'] contains the set of original nodes in the ith
            maximal clique
        - G[i][j]['members'] contains the set of original nodes in the seperator
            set between maximal cliques i and j

    Note: This method is currently only implemented for chordal graphs; TODO:
    add a step to triangulate non-chordal graphs.
    """
    # Form the original graph G1
    G1 = nx.Graph()
    G1.add_nodes_from(nodes)
    G1.add_edges_from(edges)

    # Check if graph is chordal
    # TODO: Add step to triangulate graph if not
    if not nx.is_chordal(G1):
        raise NotImplementedError("Graph triangulation not implemented.")

    # Create maximal clique graph G2
    # Each node is a maximal clique C_i
    # Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0
    G2 = nx.Graph()
    for i, c in enumerate(nx.chordal_graph_cliques(G1)):
        G2.add_node(i, members=c)
    for i in G2.nodes:
        for j in G2.nodes:
            S = G2.node[i]["members"].intersection(G2.node[j]["members"])
            w = len(S)
            if w > 0:
                G2.add_edge(i, j, weight=w, members=S)

    # Return a minimum spanning tree of G2
    return nx.minimum_spanning_tree(G2) 
Example #2
Source File: chordal_alg.py    From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 5 votes vote down vote up
def chordal_graph_cliques(G):
    """Returns the set of maximal cliques of a chordal graph.
    
    The algorithm breaks the graph in connected components and performs a 
    maximum cardinality search in each component to get the cliques.
    
    Parameters
    ----------
    G : graph
      A NetworkX graph 
    
    Returns
    -------
    cliques : A set containing the maximal cliques in G.
    
    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. 
        If the input graph is an instance of one of these classes, a
        NetworkXError is raised.
        The algorithm can only be applied to chordal graphs. If the
        input graph is found to be non-chordal, a NetworkXError is raised.
        
    Examples
    --------
    >>> import networkx as nx
    >>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)    
    >>> setlist = nx.chordal_graph_cliques(G)
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")
    
    cliques = set()
    for C in nx.connected.connected_component_subgraphs(G):
        cliques |= _connected_chordal_graph_cliques(C)
        
    return cliques 
Example #3
Source File: test_chordal.py    From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 5 votes vote down vote up
def test_is_chordal(self):
        assert_false(nx.is_chordal(self.non_chordal_G))
        assert_true(nx.is_chordal(self.chordal_G))
        assert_true(nx.is_chordal(self.connected_chordal_G))
        assert_true(nx.is_chordal(nx.complete_graph(3)))
        assert_true(nx.is_chordal(nx.cycle_graph(3)))
        assert_false(nx.is_chordal(nx.cycle_graph(5))) 
Example #4
Source File: graph.py    From pyBN with MIT License 5 votes vote down vote up
def is_chordal(edge_list):
	"""
	Check if the graph is chordal/triangulated.

	Parameters
	----------
	*edge_list* : a list of lists (optional)
	The edges to check (if not self.E)

	Returns
	-------
	*nx.is_chordal(G)* : a boolean
	Whether the graph is chordal or not

	Effects
	-------
	None

	Notes
	-----
	Again, do we need networkx for this? Eventually should
	write this check on our own.

	"""
	G = nx.Graph(list(edge_list))
	return nx.is_chordal(G) 
Example #5
Source File: test_chordal.py    From Carnets with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_is_chordal(self):
        assert_false(nx.is_chordal(self.non_chordal_G))
        assert_true(nx.is_chordal(self.chordal_G))
        assert_true(nx.is_chordal(self.connected_chordal_G))
        assert_true(nx.is_chordal(nx.complete_graph(3)))
        assert_true(nx.is_chordal(nx.cycle_graph(3)))
        assert_false(nx.is_chordal(nx.cycle_graph(5))) 
Example #6
Source File: chordal.py    From Carnets with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def chordal_graph_cliques(G):
    """Returns the set of maximal cliques of a chordal graph.

    The algorithm breaks the graph in connected components and performs a
    maximum cardinality search in each component to get the cliques.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Returns
    -------
    cliques : A set containing the maximal cliques in G.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.
        The algorithm can only be applied to chordal graphs. If the
        input graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> import networkx as nx
    >>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)
    >>> setlist = nx.chordal_graph_cliques(G)
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")

    cliques = set()
    for C in nx.connected.connected_component_subgraphs(G):
        cliques |= _connected_chordal_graph_cliques(C)

    return cliques 
Example #7
Source File: test_chordal.py    From aws-kube-codesuite with Apache License 2.0 5 votes vote down vote up
def test_is_chordal(self):
        assert_false(nx.is_chordal(self.non_chordal_G))
        assert_true(nx.is_chordal(self.chordal_G))
        assert_true(nx.is_chordal(self.connected_chordal_G))
        assert_true(nx.is_chordal(nx.complete_graph(3)))
        assert_true(nx.is_chordal(nx.cycle_graph(3)))
        assert_false(nx.is_chordal(nx.cycle_graph(5))) 
Example #8
Source File: chordal.py    From aws-kube-codesuite with Apache License 2.0 5 votes vote down vote up
def chordal_graph_cliques(G):
    """Returns the set of maximal cliques of a chordal graph.

    The algorithm breaks the graph in connected components and performs a
    maximum cardinality search in each component to get the cliques.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Returns
    -------
    cliques : A set containing the maximal cliques in G.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.
        The algorithm can only be applied to chordal graphs. If the
        input graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> import networkx as nx
    >>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)
    >>> setlist = nx.chordal_graph_cliques(G)
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")

    cliques = set()
    for C in nx.connected.connected_component_subgraphs(G):
        cliques |= _connected_chordal_graph_cliques(C)

    return cliques 
Example #9
Source File: graph_utils.py    From snorkel with Apache License 2.0 4 votes vote down vote up
def get_clique_tree(nodes: Iterable[int], edges: List[Tuple[int, int]]) -> nx.Graph:
    """
    Given a set of int nodes i and edges (i,j), returns a clique tree.

    Clique tree is an object G for which:
    - G.node[i]['members'] contains the set of original nodes in the ith
        maximal clique
    - G[i][j]['members'] contains the set of original nodes in the seperator
        set between maximal cliques i and j

    Note: This method is currently only implemented for chordal graphs; TODO:
    add a step to triangulate non-chordal graphs.

    Parameters
    ----------
    nodes
        A list of nodes indices
    edges
        A list of tuples, where each tuple has indices for connected nodes

    Returns
    -------
    networkx.Graph
        An object G representing clique tree
    """
    # Form the original graph G1
    G1 = nx.Graph()
    G1.add_nodes_from(nodes)
    G1.add_edges_from(edges)

    # Check if graph is chordal
    # TODO: Add step to triangulate graph if not
    if not nx.is_chordal(G1):
        raise NotImplementedError("Graph triangulation not implemented.")

    # Create maximal clique graph G2
    # Each node is a maximal clique C_i
    # Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0
    G2 = nx.Graph()
    for i, c in enumerate(nx.chordal_graph_cliques(G1)):
        G2.add_node(i, members=c)
    for i in G2.nodes:
        for j in G2.nodes:
            S = G2.node[i]["members"].intersection(G2.node[j]["members"])
            w = len(S)
            if w > 0:
                G2.add_edge(i, j, weight=w, members=S)

    # Return a minimum spanning tree of G2
    return nx.minimum_spanning_tree(G2) 
Example #10
Source File: chordal_alg.py    From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 4 votes vote down vote up
def is_chordal(G):
    """Checks whether G is a chordal graph.

    A graph is chordal if every cycle of length at least 4 has a chord
    (an edge joining two nodes not adjacent in the cycle).

    Parameters
    ----------
    G : graph  
      A NetworkX graph.  

    Returns
    -------
    chordal : bool
      True if G is a chordal graph and False otherwise.
    
    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. 
        If the input graph is an instance of one of these classes, a
        NetworkXError is raised.
        
    Examples
    --------
    >>> import networkx as nx
    >>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
    >>> G=nx.Graph(e)
    >>> nx.is_chordal(G)
    True
   
    Notes
    -----
    The routine tries to go through every node following maximum cardinality 
    search. It returns False when it finds that the separator for any node 
    is not a clique.  Based on the algorithms in [1]_.

    References
    ----------
    .. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms 
       to test chordality of graphs, test acyclicity of hypergraphs, and 
       selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), 
       pp. 566–579.
    """
    if G.is_directed():
        raise nx.NetworkXError('Directed graphs not supported')
    if G.is_multigraph():
        raise nx.NetworkXError('Multiply connected graphs not supported.')
    if len(_find_chordality_breaker(G))==0:
        return True
    else:
        return False 
Example #11
Source File: chordal_alg.py    From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 4 votes vote down vote up
def chordal_graph_treewidth(G):
    """Returns the treewidth of the chordal graph G.
 
    Parameters
    ----------
    G : graph
      A NetworkX graph 
    
    Returns
    -------
    treewidth : int
	The size of the largest clique in the graph minus one.
    
    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. 
        If the input graph is an instance of one of these classes, a
        NetworkXError is raised.
        The algorithm can only be applied to chordal graphs. If
        the input graph is found to be non-chordal, a NetworkXError is raised.
        
    Examples
    --------
    >>> import networkx as nx
    >>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)    
    >>> nx.chordal_graph_treewidth(G)
    3

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")
    
    max_clique = -1
    for clique in nx.chordal_graph_cliques(G):
        max_clique = max(max_clique,len(clique))
    return max_clique - 1 
Example #12
Source File: chordal.py    From Carnets with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def is_chordal(G):
    """Checks whether G is a chordal graph.

    A graph is chordal if every cycle of length at least 4 has a chord
    (an edge joining two nodes not adjacent in the cycle).

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    Returns
    -------
    chordal : bool
      True if G is a chordal graph and False otherwise.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> import networkx as nx
    >>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
    >>> G=nx.Graph(e)
    >>> nx.is_chordal(G)
    True

    Notes
    -----
    The routine tries to go through every node following maximum cardinality
    search. It returns False when it finds that the separator for any node
    is not a clique.  Based on the algorithms in [1]_.

    References
    ----------
    .. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
       to test chordality of graphs, test acyclicity of hypergraphs, and
       selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
       pp. 566–579.
    """
    if G.is_directed():
        raise nx.NetworkXError('Directed graphs not supported')
    if G.is_multigraph():
        raise nx.NetworkXError('Multiply connected graphs not supported.')
    if len(_find_chordality_breaker(G)) == 0:
        return True
    else:
        return False 
Example #13
Source File: chordal.py    From Carnets with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def chordal_graph_treewidth(G):
    """Returns the treewidth of the chordal graph G.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Returns
    -------
    treewidth : int
        The size of the largest clique in the graph minus one.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.
        The algorithm can only be applied to chordal graphs. If
        the input graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> import networkx as nx
    >>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)
    >>> nx.chordal_graph_treewidth(G)
    3

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")

    max_clique = -1
    for clique in nx.chordal_graph_cliques(G):
        max_clique = max(max_clique, len(clique))
    return max_clique - 1 
Example #14
Source File: chordal.py    From aws-kube-codesuite with Apache License 2.0 4 votes vote down vote up
def is_chordal(G):
    """Checks whether G is a chordal graph.

    A graph is chordal if every cycle of length at least 4 has a chord
    (an edge joining two nodes not adjacent in the cycle).

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    Returns
    -------
    chordal : bool
      True if G is a chordal graph and False otherwise.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> import networkx as nx
    >>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
    >>> G=nx.Graph(e)
    >>> nx.is_chordal(G)
    True

    Notes
    -----
    The routine tries to go through every node following maximum cardinality
    search. It returns False when it finds that the separator for any node
    is not a clique.  Based on the algorithms in [1]_.

    References
    ----------
    .. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
       to test chordality of graphs, test acyclicity of hypergraphs, and
       selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
       pp. 566–579.
    """
    if G.is_directed():
        raise nx.NetworkXError('Directed graphs not supported')
    if G.is_multigraph():
        raise nx.NetworkXError('Multiply connected graphs not supported.')
    if len(_find_chordality_breaker(G)) == 0:
        return True
    else:
        return False 
Example #15
Source File: chordal.py    From aws-kube-codesuite with Apache License 2.0 4 votes vote down vote up
def chordal_graph_treewidth(G):
    """Returns the treewidth of the chordal graph G.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Returns
    -------
    treewidth : int
        The size of the largest clique in the graph minus one.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.
        The algorithm can only be applied to chordal graphs. If
        the input graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> import networkx as nx
    >>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)
    >>> nx.chordal_graph_treewidth(G)
    3

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")

    max_clique = -1
    for clique in nx.chordal_graph_cliques(G):
        max_clique = max(max_clique, len(clique))
    return max_clique - 1