Python networkx.read_weighted_edgelist() Examples
The following are 9
code examples of networkx.read_weighted_edgelist().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: DNGR.py From DNGR-Keras with MIT License | 5 votes |
def read_graph(filename,g_type): with open('data/'+filename,'rb') as f: if g_type == "undirected": G = nx.read_weighted_edgelist(f) else: G = nx.read_weighted_edgelist(f,create_using=nx.DiGraph()) node_idx = G.nodes() adj_matrix = np.asarray(nx.adjacency_matrix(G, nodelist=None,weight='weight').todense()) return adj_matrix, node_idx
Example #2
Source File: test_edgelist.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_read_edgelist_2(self): s = b"""\ # comment line 1 2 2.0 # comment line 2 3 3.0 """ bytesIO = io.BytesIO(s) G = nx.read_edgelist(bytesIO,nodetype=int,data=False) assert_edges_equal(G.edges(),[(1,2),(2,3)]) bytesIO = io.BytesIO(s) G = nx.read_weighted_edgelist(bytesIO,nodetype=int) assert_edges_equal(G.edges(data=True), [(1,2,{'weight':2.0}),(2,3,{'weight':3.0})])
Example #3
Source File: utils.py From BioNEV with MIT License | 5 votes |
def read_for_SVD(filename, weighted=False): if weighted: G = nx.read_weighted_edgelist(filename) else: G = nx.read_edgelist(filename) return G
Example #4
Source File: utils.py From BioNEV with MIT License | 5 votes |
def split_train_test_graph(input_edgelist, seed, testing_ratio=0.2, weighted=False): if (weighted): G = nx.read_weighted_edgelist(input_edgelist) else: G = nx.read_edgelist(input_edgelist) node_num1, edge_num1 = len(G.nodes), len(G.edges) print('Original Graph: nodes:', node_num1, 'edges:', edge_num1) testing_edges_num = int(len(G.edges) * testing_ratio) random.seed(seed) testing_pos_edges = random.sample(G.edges, testing_edges_num) G_train = copy.deepcopy(G) for edge in testing_pos_edges: node_u, node_v = edge if (G_train.degree(node_u) > 1 and G_train.degree(node_v) > 1): G_train.remove_edge(node_u, node_v) G_train.remove_nodes_from(nx.isolates(G_train)) node_num2, edge_num2 = len(G_train.nodes), len(G_train.edges) assert node_num1 == node_num2 train_graph_filename = 'graph_train.edgelist' if weighted: nx.write_edgelist(G_train, train_graph_filename, data=['weight']) else: nx.write_edgelist(G_train, train_graph_filename, data=False) node_num1, edge_num1 = len(G_train.nodes), len(G_train.edges) print('Training Graph: nodes:', node_num1, 'edges:', edge_num1) return G, G_train, testing_pos_edges, train_graph_filename
Example #5
Source File: test_edgelist.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_read_edgelist_2(self): s = b"""\ # comment line 1 2 2.0 # comment line 2 3 3.0 """ bytesIO = io.BytesIO(s) G = nx.read_edgelist(bytesIO, nodetype=int, data=False) assert_edges_equal(G.edges(), [(1, 2), (2, 3)]) bytesIO = io.BytesIO(s) G = nx.read_weighted_edgelist(bytesIO, nodetype=int) assert_edges_equal(G.edges(data=True), [(1, 2, {'weight': 2.0}), (2, 3, {'weight': 3.0})])
Example #6
Source File: test_edgelist.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_read_edgelist_2(self): s = b"""\ # comment line 1 2 2.0 # comment line 2 3 3.0 """ bytesIO = io.BytesIO(s) G = nx.read_edgelist(bytesIO,nodetype=int,data=False) assert_edges_equal(G.edges(),[(1,2),(2,3)]) bytesIO = io.BytesIO(s) G = nx.read_weighted_edgelist(bytesIO,nodetype=int) assert_edges_equal(G.edges(data=True), [(1,2,{'weight':2.0}),(2,3,{'weight':3.0})])
Example #7
Source File: edgelist.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 4 votes |
def read_weighted_edgelist(path, comments="#", delimiter=None, create_using=None, nodetype=None, encoding='utf-8'): """Read a graph as list of edges with numeric weights. Parameters ---------- path : file or string File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. comments : string, optional The character used to indicate the start of a comment. delimiter : string, optional The string used to separate values. The default is whitespace. create_using : Graph container, optional, Use specified container to build graph. The default is networkx.Graph, an undirected graph. nodetype : int, float, str, Python type, optional Convert node data from strings to specified type encoding: string, optional Specify which encoding to use when reading file. Returns ------- G : graph A networkx Graph or other type specified with create_using Notes ----- Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) Example edgelist file format. With numeric edge data:: # read with # >>> G=nx.read_weighted_edgelist(fh) # source target data a b 1 a c 3.14159 d e 42 """ return read_edgelist(path, comments=comments, delimiter=delimiter, create_using=create_using, nodetype=nodetype, data=(('weight',float),), encoding = encoding ) # fixture for nose tests
Example #8
Source File: edgelist.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def read_weighted_edgelist(path, comments="#", delimiter=None, create_using=None, nodetype=None, encoding='utf-8'): """Read a graph as list of edges with numeric weights. Parameters ---------- path : file or string File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. comments : string, optional The character used to indicate the start of a comment. delimiter : string, optional The string used to separate values. The default is whitespace. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. nodetype : int, float, str, Python type, optional Convert node data from strings to specified type encoding: string, optional Specify which encoding to use when reading file. Returns ------- G : graph A networkx Graph or other type specified with create_using Notes ----- Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) Example edgelist file format. With numeric edge data:: # read with # >>> G=nx.read_weighted_edgelist(fh) # source target data a b 1 a c 3.14159 d e 42 """ return read_edgelist(path, comments=comments, delimiter=delimiter, create_using=create_using, nodetype=nodetype, data=(('weight', float),), encoding=encoding ) # fixture for nose tests
Example #9
Source File: edgelist.py From aws-kube-codesuite with Apache License 2.0 | 4 votes |
def read_weighted_edgelist(path, comments="#", delimiter=None, create_using=None, nodetype=None, encoding='utf-8'): """Read a graph as list of edges with numeric weights. Parameters ---------- path : file or string File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. comments : string, optional The character used to indicate the start of a comment. delimiter : string, optional The string used to separate values. The default is whitespace. create_using : Graph container, optional, Use specified container to build graph. The default is networkx.Graph, an undirected graph. nodetype : int, float, str, Python type, optional Convert node data from strings to specified type encoding: string, optional Specify which encoding to use when reading file. Returns ------- G : graph A networkx Graph or other type specified with create_using Notes ----- Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) Example edgelist file format. With numeric edge data:: # read with # >>> G=nx.read_weighted_edgelist(fh) # source target data a b 1 a c 3.14159 d e 42 """ return read_edgelist(path, comments=comments, delimiter=delimiter, create_using=create_using, nodetype=nodetype, data=(('weight',float),), encoding = encoding ) # fixture for nose tests