Python networkx.dfs_edges() Examples
The following are 26
code examples of networkx.dfs_edges().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: inference.py From science_rcn with MIT License | 10 votes |
def get_tree_schedule(frcs, graph): """ Find the most constrained tree in the graph and returns which messages to compute it. This is the minimum spanning tree of the perturb_radius edge attribute. See forward_pass for parameters. Returns ------- tree_schedules : numpy.ndarray of numpy.int Describes how to compute the max marginal for the most constrained tree. Nx3 2D array of (source pool_idx, target pool_idx, perturb radius), where each row represents a single outgoing factor message computation. """ min_tree = nx.minimum_spanning_tree(graph, 'perturb_radius') return np.array([(target, source, graph.edge[source][target]['perturb_radius']) for source, target in nx.dfs_edges(min_tree)])[::-1]
Example #2
Source File: test_cfgemulated.py From angr with BSD 2-Clause "Simplified" License | 6 votes |
def test_max_steps(): binary_path = os.path.join(test_location, "x86_64", "fauxware") b = angr.Project(binary_path, load_options={'auto_load_libs': False}) cfg = b.analyses.CFGEmulated(max_steps=5, fail_fast=True) dfs_edges = networkx.dfs_edges(cfg.graph) depth_map = {} for src, dst in dfs_edges: if src not in depth_map: depth_map[src] = 0 if dst not in depth_map: depth_map[dst] = depth_map[src] + 1 depth_map[dst] = max(depth_map[src] + 1, depth_map[dst]) nose.tools.assert_less_equal(max(depth_map.values()), 5)
Example #3
Source File: greedy_coloring.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def strategy_connected_sequential(G, colors, traversal='bfs'): """ Connected sequential ordering (CS). Yield nodes in such an order, that each node, except the first one, has at least one neighbour in the preceeding sequence. The sequence can be generated using both BFS and DFS search (using the strategy_connected_sequential_bfs and strategy_connected_sequential_dfs method). The default is bfs. """ for component_graph in nx.connected_component_subgraphs(G): source = component_graph.nodes()[0] yield source # Pick the first node as source if traversal == 'bfs': tree = nx.bfs_edges(component_graph, source) elif traversal == 'dfs': tree = nx.dfs_edges(component_graph, source) else: raise nx.NetworkXError( 'Please specify bfs or dfs for connected sequential ordering') for (_, end) in tree: # Then yield nodes in the order traversed by either BFS or DFS yield end
Example #4
Source File: dag.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def transitive_reduction(G): """ Returns transitive reduction of a directed graph The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is in E and there is no path from v to w in G with length greater than 1. Parameters ---------- G : NetworkX DiGraph A directed acyclic graph (DAG) Returns ------- NetworkX DiGraph The transitive reduction of `G` Raises ------ NetworkXError If `G` is not a directed acyclic graph (DAG) transitive reduction is not uniquely defined and a :exc:`NetworkXError` exception is raised. References ---------- https://en.wikipedia.org/wiki/Transitive_reduction """ if not is_directed_acyclic_graph(G): raise nx.NetworkXError( "Transitive reduction only uniquely defined on directed acyclic graphs.") TR = nx.DiGraph() TR.add_nodes_from(G.nodes()) for u in G: u_edges = set(G[u]) for v in G[u]: u_edges -= {y for x, y in nx.dfs_edges(G, v)} TR.add_edges_from((u, v) for v in u_edges) return TR
Example #5
Source File: director.py From angr with BSD 2-Clause "Simplified" License | 5 votes |
def _dfs_edges(graph, source, max_steps=None): """ Perform a depth-first search on the given DiGraph, with a limit on maximum steps. :param networkx.DiGraph graph: The graph to traverse. :param Any source: The source to begin traversal. :param int max_steps: Maximum steps of the traversal, or None if not limiting steps. :return: An iterator of edges. """ if max_steps is None: yield networkx.dfs_edges(graph, source) else: steps_map = defaultdict(int) traversed = { source } stack = [ source ] while stack: src = stack.pop() for dst in graph.successors(src): if dst in traversed: continue traversed.add(dst) dst_steps = max(steps_map[src] + 1, steps_map[dst]) if dst_steps > max_steps: continue yield src, dst steps_map[dst] = dst_steps stack.append(dst)
Example #6
Source File: test_dfs.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_dls_edges(self): edges = nx.dfs_edges(self.G, source=9, depth_limit=4) assert_equal(list(edges),[(9, 8), (8, 7), (7, 2), (2, 1), (2, 3), (9, 10)])
Example #7
Source File: test_dfs.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_dfs_edges(self): edges=nx.dfs_edges(self.G,source=0) assert_equal(list(edges),[(0, 1), (1, 2), (2, 4), (4, 3)]) edges=nx.dfs_edges(self.D) assert_equal(list(edges),[(0, 1), (2, 3)])
Example #8
Source File: depth_first_search.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def dfs_predecessors(G, source=None, depth_limit=None): """Return dictionary of predecessors in depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- pred: dict A dictionary with nodes as keys and predecessor nodes as values. Examples -------- >>> G = nx.path_graph(4) >>> nx.dfs_predecessors(G, source=0) {1: 0, 2: 1, 3: 2} >>> nx.dfs_predecessors(G, source=0, depth_limit=2) {1: 0, 2: 1} Notes ----- If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. The implementation of this function is adapted from David Eppstein's depth-first search function in `PADS`_, with modifications to allow depth limits based on the Wikipedia article "`Depth-limited search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search """ return {t: s for s, t in dfs_edges(G, source, depth_limit)}
Example #9
Source File: depth_first_search.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def dfs_tree(G, source=None, depth_limit=None): """Return oriented tree constructed from a depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- T : NetworkX DiGraph An oriented tree Examples -------- >>> G = nx.path_graph(5) >>> T = nx.dfs_tree(G, source=0, depth_limit=2) >>> list(T.edges()) [(0, 1), (1, 2)] >>> T = nx.dfs_tree(G, source=0) >>> list(T.edges()) [(0, 1), (1, 2), (2, 3), (3, 4)] """ T = nx.DiGraph() if source is None: T.add_nodes_from(G) else: T.add_node(source) T.add_edges_from(dfs_edges(G, source, depth_limit)) return T
Example #10
Source File: greedy_coloring.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def strategy_connected_sequential(G, colors, traversal='bfs'): """Returns an iterable over nodes in ``G`` in the order given by a breadth-first or depth-first traversal. ``traversal`` must be one of the strings ``'dfs'`` or ``'bfs'``, representing depth-first traversal or breadth-first traversal, respectively. The generated sequence has the property that for each node except the first, at least one neighbor appeared earlier in the sequence. ``G`` is a NetworkX graph. ``colors`` is ignored. """ if traversal == 'bfs': traverse = nx.bfs_edges elif traversal == 'dfs': traverse = nx.dfs_edges else: raise nx.NetworkXError("Please specify one of the strings 'bfs' or" " 'dfs' for connected sequential ordering") for component in nx.connected_component_subgraphs(G): source = arbitrary_element(component) # Yield the source node, then all the nodes in the specified # traversal order. yield source for (_, end) in traverse(component, source): yield end
Example #11
Source File: test_dfs.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_dls_edges(self): edges = nx.dfs_edges(self.G, source=9, depth_limit=4) assert_equal(list(edges), [(9, 8), (8, 7), (7, 2), (2, 1), (2, 3), (9, 10)])
Example #12
Source File: test_dfs.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_dfs_edges(self): edges = nx.dfs_edges(self.G, source=0) assert_equal(list(edges), [(0, 1), (1, 2), (2, 4), (4, 3)]) edges = nx.dfs_edges(self.D) assert_equal(list(edges), [(0, 1), (2, 3)])
Example #13
Source File: depth_first_search.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def dfs_predecessors(G, source=None, depth_limit=None): """Returns dictionary of predecessors in depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- pred: dict A dictionary with nodes as keys and predecessor nodes as values. Examples -------- >>> G = nx.path_graph(4) >>> nx.dfs_predecessors(G, source=0) {1: 0, 2: 1, 3: 2} >>> nx.dfs_predecessors(G, source=0, depth_limit=2) {1: 0, 2: 1} Notes ----- If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. The implementation of this function is adapted from David Eppstein's depth-first search function in `PADS`_, with modifications to allow depth limits based on the Wikipedia article "`Depth-limited search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search """ return {t: s for s, t in dfs_edges(G, source, depth_limit)}
Example #14
Source File: depth_first_search.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def dfs_tree(G, source=None, depth_limit=None): """Returns oriented tree constructed from a depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- T : NetworkX DiGraph An oriented tree Examples -------- >>> G = nx.path_graph(5) >>> T = nx.dfs_tree(G, source=0, depth_limit=2) >>> list(T.edges()) [(0, 1), (1, 2)] >>> T = nx.dfs_tree(G, source=0) >>> list(T.edges()) [(0, 1), (1, 2), (2, 3), (3, 4)] """ T = nx.DiGraph() if source is None: T.add_nodes_from(G) else: T.add_node(source) T.add_edges_from(dfs_edges(G, source, depth_limit)) return T
Example #15
Source File: greedy_coloring.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def strategy_connected_sequential(G, colors, traversal='bfs'): """Returns an iterable over nodes in ``G`` in the order given by a breadth-first or depth-first traversal. ``traversal`` must be one of the strings ``'dfs'`` or ``'bfs'``, representing depth-first traversal or breadth-first traversal, respectively. The generated sequence has the property that for each node except the first, at least one neighbor appeared earlier in the sequence. ``G`` is a NetworkX graph. ``colors`` is ignored. """ if traversal == 'bfs': traverse = nx.bfs_edges elif traversal == 'dfs': traverse = nx.dfs_edges else: raise nx.NetworkXError("Please specify one of the strings 'bfs' or" " 'dfs' for connected sequential ordering") for component in nx.connected_component_subgraphs(G): source = arbitrary_element(component) # Yield the source node, then all the nodes in the specified # traversal order. yield source for (_, end) in traverse(component, source): yield end
Example #16
Source File: depth_first_search.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def dfs_successors(G, source=None): """Return dictionary of successors in depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. Returns ------- succ: dict A dictionary with nodes as keys and list of successor nodes as values. Examples -------- >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(nx.dfs_successors(G,0)) {0: [1], 1: [2]} Notes ----- Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. """ d = defaultdict(list) for s,t in dfs_edges(G,source=source): d[s].append(t) return dict(d)
Example #17
Source File: depth_first_search.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def dfs_predecessors(G, source=None): """Return dictionary of predecessors in depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. Returns ------- pred: dict A dictionary with nodes as keys and predecessor nodes as values. Examples -------- >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(nx.dfs_predecessors(G,0)) {1: 0, 2: 1} Notes ----- Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. """ return dict((t,s) for s,t in dfs_edges(G,source=source))
Example #18
Source File: depth_first_search.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def dfs_tree(G, source): """Return oriented tree constructed from a depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search. Returns ------- T : NetworkX DiGraph An oriented tree Examples -------- >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> T = nx.dfs_tree(G,0) >>> print(T.edges()) [(0, 1), (1, 2)] """ T = nx.DiGraph() if source is None: T.add_nodes_from(G) else: T.add_node(source) T.add_edges_from(dfs_edges(G,source)) return T
Example #19
Source File: graph.py From cppdep with GNU General Public License v3.0 | 5 votes |
def __transitive_reduction(self): """Transitive reduction for acyclic graphs.""" assert nx.is_directed_acyclic_graph(self.digraph) for u in self.digraph: transitive_vertex = [] for v in self.digraph[u]: transitive_vertex.extend( x for _, x in nx.dfs_edges(self.digraph, v)) self.digraph.remove_edges_from((u, x) for x in transitive_vertex)
Example #20
Source File: depth_first_search.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def dfs_successors(G, source=None, depth_limit=None): """Returns dictionary of successors in depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- succ: dict A dictionary with nodes as keys and list of successor nodes as values. Examples -------- >>> G = nx.path_graph(5) >>> nx.dfs_successors(G, source=0) {0: [1], 1: [2], 2: [3], 3: [4]} >>> nx.dfs_successors(G, source=0, depth_limit=2) {0: [1], 1: [2]} Notes ----- If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. The implementation of this function is adapted from David Eppstein's depth-first search function in `PADS`_, with modifications to allow depth limits based on the Wikipedia article "`Depth-limited search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search """ d = defaultdict(list) for s, t in dfs_edges(G, source=source, depth_limit=depth_limit): d[s].append(t) return dict(d)
Example #21
Source File: depth_first_search.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def dfs_postorder_nodes(G, source=None, depth_limit=None): """Generate nodes in a depth-first-search post-ordering starting at source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- nodes: generator A generator of nodes in a depth-first-search post-ordering. Examples -------- >>> G = nx.path_graph(5) >>> list(nx.dfs_postorder_nodes(G, source=0)) [4, 3, 2, 1, 0] >>> list(nx.dfs_postorder_nodes(G, source=0, depth_limit=2)) [1, 0] Notes ----- If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. The implementation of this function is adapted from David Eppstein's depth-first search function in `PADS`_, with modifications to allow depth limits based on the Wikipedia article "`Depth-limited search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search See Also -------- dfs_edges dfs_preorder_nodes dfs_labeled_edges """ edges = nx.dfs_labeled_edges(G, source=source, depth_limit=depth_limit) return (v for u, v, d in edges if d == 'reverse')
Example #22
Source File: dag.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def transitive_reduction(G): """ Returns transitive reduction of a directed graph The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is in E and there is no path from v to w in G with length greater than 1. Parameters ---------- G : NetworkX DiGraph A directed acyclic graph (DAG) Returns ------- NetworkX DiGraph The transitive reduction of `G` Raises ------ NetworkXError If `G` is not a directed acyclic graph (DAG) transitive reduction is not uniquely defined and a :exc:`NetworkXError` exception is raised. References ---------- https://en.wikipedia.org/wiki/Transitive_reduction """ if not is_directed_acyclic_graph(G): msg = "Directed Acyclic Graph required for transitive_reduction" raise nx.NetworkXError(msg) TR = nx.DiGraph() TR.add_nodes_from(G.nodes()) descendants = {} # count before removing set stored in descendants check_count = dict(G.in_degree) for u in G: u_nbrs = set(G[u]) for v in G[u]: if v in u_nbrs: if v not in descendants: descendants[v] = {y for x, y in nx.dfs_edges(G, v)} u_nbrs -= descendants[v] check_count[v] -= 1 if check_count[v] == 0: del descendants[v] TR.add_edges_from((u, v) for v in u_nbrs) return TR
Example #23
Source File: depth_first_search.py From aws-kube-codesuite with Apache License 2.0 | 4 votes |
def dfs_successors(G, source=None, depth_limit=None): """Return dictionary of successors in depth-first-search from source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- succ: dict A dictionary with nodes as keys and list of successor nodes as values. Examples -------- >>> G = nx.path_graph(5) >>> nx.dfs_successors(G, source=0) {0: [1], 1: [2], 2: [3], 3: [4]} >>> nx.dfs_successors(G, source=0, depth_limit=2) {0: [1], 1: [2]} Notes ----- If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. The implementation of this function is adapted from David Eppstein's depth-first search function in `PADS`_, with modifications to allow depth limits based on the Wikipedia article "`Depth-limited search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search """ d = defaultdict(list) for s, t in dfs_edges(G, source=source, depth_limit=depth_limit): d[s].append(t) return dict(d)
Example #24
Source File: depth_first_search.py From aws-kube-codesuite with Apache License 2.0 | 4 votes |
def dfs_postorder_nodes(G, source=None, depth_limit=None): """Generate nodes in a depth-first-search post-ordering starting at source. Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. depth_limit : int, optional (default=len(G)) Specify the maximum search depth. Returns ------- nodes: generator A generator of nodes in a depth-first-search post-ordering. Examples -------- >>> G = nx.path_graph(5) >>> list(nx.dfs_postorder_nodes(G, source=0)) [4, 3, 2, 1, 0] >>> list(nx.dfs_postorder_nodes(G, source=0, depth_limit=2)) [1, 0] Notes ----- If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. The implementation of this function is adapted from David Eppstein's depth-first search function in `PADS`_, with modifications to allow depth limits based on the Wikipedia article "`Depth-limited search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search See Also -------- dfs_edges dfs_preorder_nodes dfs_labeled_edges """ edges = nx.dfs_labeled_edges(G, source=source, depth_limit=depth_limit) return (v for u, v, d in edges if d == 'reverse')
Example #25
Source File: depth_first_search.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 4 votes |
def dfs_edges(G, source=None): """Produce edges in a depth-first-search (DFS). Parameters ---------- G : NetworkX graph source : node, optional Specify starting node for depth-first search and return edges in the component reachable from source. Returns ------- edges: generator A generator of edges in the depth-first-search. Examples -------- >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(list(nx.dfs_edges(G,0))) [(0, 1), (1, 2)] Notes ----- Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. """ if source is None: # produce edges for all components nodes = G else: # produce edges for components with source nodes = [source] visited=set() for start in nodes: if start in visited: continue visited.add(start) stack = [(start,iter(G[start]))] while stack: parent,children = stack[-1] try: child = next(children) if child not in visited: yield parent,child visited.add(child) stack.append((child,iter(G[child]))) except StopIteration: stack.pop()
Example #26
Source File: OrientedNormalEstimation.py From pcloudpy with BSD 3-Clause "New" or "Revised" License | 4 votes |
def update(self): array_with_color = numpy_from_polydata(self.input_) normals = np.empty_like(array_with_color[:,0:3]) coord = array_with_color[:,0:3] neigh = NearestNeighbors(self.number_neighbors) neigh.fit(coord) for i in xrange(0,len(coord)): #Determine the neighbours of point d = neigh.kneighbors(coord[i]) #Add coordinates of neighbours , dont include center point to array. Determine coordinate by the index of the neighbours. y = np.zeros((self.number_neighbors-1,3)) y = coord[d[1][0][1:self.number_neighbors],0:3] #Get information content #Assign information content to each point i.e xyzb normals[i,0:3] = self.get_normals(y) #Get the point with highest z value , this will be used as the starting point for my depth search z_max_point = np.where(coord[:,2]== np.max(coord[:,2])) z_max_point = int(z_max_point[0]) if normals[z_max_point,2] < 0 : #ie normal doesnt point out normals[z_max_point,:]=-normals[z_max_point,:] #Create a graph G = nx.Graph() #Add all points and there neighbours to graph, make the weight equal to the distance between points for i in xrange(0,len(coord)): d = neigh.kneighbors(coord[i,:3]) for c in range(1,self.number_neighbors): p1 = d[1][0][0] p2 = d[1][0][c] n1 = normals[d[1][0][0],:] n2 = normals[d[1][0][c],:] dot = np.dot(n1,n2) G.add_edge(p1,p2,weight =1-np.abs(dot)) T = nx.minimum_spanning_tree(G) x=[] for i in nx.dfs_edges(T,z_max_point): x+=i inds = np.where(np.diff(x))[0] out = np.split(x,inds[np.diff(inds)==1][1::2]+1) for j in range(0,len(out)): for i in range(0,len(out[j])-1): n1 = normals[out[j][i],:] n2 = normals[out[j][i+1],:] if np.dot(n2,n1)<0: normals[out[j][i+1],:]=-normals[out[j][i+1],:] self.output_ = copy_polydata_add_normals(self.input_, normals)