Python networkx.stochastic_graph() Examples
The following are 15
code examples of networkx.stochastic_graph().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: test_stochastic.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_stochastic(): G=nx.DiGraph() G.add_edge(0,1) G.add_edge(0,2) S=nx.stochastic_graph(G) assert_true(nx.is_isomorphic(G,S)) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})]) S=nx.stochastic_graph(G,copy=True) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #2
Source File: test_stochastic.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_stochastic_ints(): G=nx.DiGraph() G.add_edge(0,1,weight=1) G.add_edge(0,2,weight=1) S=nx.stochastic_graph(G) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #3
Source File: test_stochastic.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_stochastic_graph_input(): S = nx.stochastic_graph(nx.Graph())
Example #4
Source File: test_stochastic.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_stochastic_multigraph_input(): S = nx.stochastic_graph(nx.MultiGraph())
Example #5
Source File: test_stochastic.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_default_weights(self): G = nx.DiGraph() G.add_edge(0, 1) G.add_edge(0, 2) S = nx.stochastic_graph(G) assert_true(nx.is_isomorphic(G, S)) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #6
Source File: test_stochastic.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_in_place(self): """Tests for an in-place reweighting of the edges of the graph. """ G = nx.DiGraph() G.add_edge(0, 1, weight=1) G.add_edge(0, 2, weight=1) nx.stochastic_graph(G, copy=False) assert_equal(sorted(G.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #7
Source File: test_stochastic.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_arbitrary_weights(self): G = nx.DiGraph() G.add_edge(0, 1, weight=1) G.add_edge(0, 2, weight=1) S = nx.stochastic_graph(G) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #8
Source File: test_stochastic.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_multidigraph(self): G = nx.MultiDiGraph() G.add_edges_from([(0, 1), (0, 1), (0, 2), (0, 2)]) S = nx.stochastic_graph(G) d = dict(weight=0.25) assert_equal(sorted(S.edges(data=True)), [(0, 1, d), (0, 1, d), (0, 2, d), (0, 2, d)])
Example #9
Source File: test_stochastic.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_graph_disallowed(self): nx.stochastic_graph(nx.Graph())
Example #10
Source File: test_stochastic.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_default_weights(self): G = nx.DiGraph() G.add_edge(0, 1) G.add_edge(0, 2) S = nx.stochastic_graph(G) assert_true(nx.is_isomorphic(G, S)) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #11
Source File: test_stochastic.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_in_place(self): """Tests for an in-place reweighting of the edges of the graph. """ G = nx.DiGraph() G.add_edge(0, 1, weight=1) G.add_edge(0, 2, weight=1) nx.stochastic_graph(G, copy=False) assert_equal(sorted(G.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #12
Source File: test_stochastic.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_arbitrary_weights(self): G = nx.DiGraph() G.add_edge(0, 1, weight=1) G.add_edge(0, 2, weight=1) S = nx.stochastic_graph(G) assert_equal(sorted(S.edges(data=True)), [(0, 1, {'weight': 0.5}), (0, 2, {'weight': 0.5})])
Example #13
Source File: test_stochastic.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_multidigraph(self): G = nx.MultiDiGraph() G.add_edges_from([(0, 1), (0, 1), (0, 2), (0, 2)]) S = nx.stochastic_graph(G) d = dict(weight=0.25) assert_equal(sorted(S.edges(data=True)), [(0, 1, d), (0, 1, d), (0, 2, d), (0, 2, d)])
Example #14
Source File: test_stochastic.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_graph_disallowed(self): nx.stochastic_graph(nx.Graph())
Example #15
Source File: pagerank_iterative.py From complex_network with GNU General Public License v2.0 | 4 votes |
def pagerank_iterative(G, d=0.85, max_iter=100, tol=1.0e-6, weight='weight'): """ PageRank calculation iteratively """ # Step 1: Initiate PageRank N = G.number_of_nodes() # N = 11 node_and_pr = dict.fromkeys(G, 1.0 / N) # Step 2: Create a copy in (right) stochastic form stochastic_graph = nx.stochastic_graph(G, weight=weight) # M = 1/L(pj) # Step 3: Power iteration: make up to max_iter iterations dangling_value = (1-d)/N for _ in range(max_iter): # for each iteration node_and_prev_pr = node_and_pr node_and_pr = dict.fromkeys(node_and_prev_pr.keys(), 0) for node in node_and_pr: # for each node for out_node in stochastic_graph[node]: # node --> out_node node_and_pr[out_node] += d * node_and_prev_pr[node] * stochastic_graph[node][out_node][weight] # PR(p_i) = d * PR(p_j)}/L(p_j) node_and_pr[node] += dangling_value # Plot graph with one iteration ''' out_file = 'wikipedia_pagerank_example_iteration_1.pdf' node_size = [pr*30000 for node, pr in node_and_pr.items()] node_and_labels = {node : node+'\n'+str(round(pr, 3)) for node, pr in node_and_pr.items()} plotnxgraph.plot_graph(G, out_file=out_file, node_size=node_size, node_and_labels=node_and_labels) return ''' # check convergence, l1 norm err = sum([abs(node_and_pr[node] - node_and_prev_pr[node]) for node in node_and_pr]) if err < N*tol: return node_and_pr raise NetworkXError('pagerank: power iteration failed to converge in {} iterations.'.format(max_iter))