Python networkx.star_graph() Examples
The following are 30
code examples of networkx.star_graph().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: test_transform.py From dgl with Apache License 2.0 | 6 votes |
def test_line_graph(): N = 5 G = dgl.DGLGraph(nx.star_graph(N)) G.edata['h'] = F.randn((2 * N, D)) n_edges = G.number_of_edges() L = G.line_graph(shared=True) assert L.number_of_nodes() == 2 * N L.ndata['h'] = F.randn((2 * N, D)) # update node features on line graph should reflect to edge features on # original graph. u = [0, 0, 2, 3] v = [1, 2, 0, 0] eid = G.edge_ids(u, v) L.nodes[eid].data['h'] = F.zeros((4, D)) assert F.allclose(G.edges[u, v].data['h'], F.zeros((4, D))) # adding a new node feature on line graph should also reflect to a new # edge feature on original graph data = F.randn((n_edges, D)) L.ndata['w'] = data assert F.allclose(G.edata['w'], data)
Example #2
Source File: test_ego.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_ego(self): G=nx.star_graph(3) H=nx.ego_graph(G,0) assert_true(nx.is_isomorphic(G,H)) G.add_edge(1,11) G.add_edge(2,22) G.add_edge(3,33) H=nx.ego_graph(G,0) assert_true(nx.is_isomorphic(nx.star_graph(3),H)) G=nx.path_graph(3) H=nx.ego_graph(G,0) assert_equal(H.edges(), [(0, 1)]) H=nx.ego_graph(G,0,undirected=True) assert_equal(H.edges(), [(0, 1)]) H=nx.ego_graph(G,0,center=False) assert_equal(H.edges(), [])
Example #3
Source File: test_threshold.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_threshold_sequence_graph_test(self): G=nx.star_graph(10) assert_true(nxt.is_threshold_graph(G)) assert_true(nxt.is_threshold_sequence(list(G.degree().values()))) G=nx.complete_graph(10) assert_true(nxt.is_threshold_graph(G)) assert_true(nxt.is_threshold_sequence(list(G.degree().values()))) deg=[3,2,2,1,1,1] assert_false(nxt.is_threshold_sequence(deg)) deg=[3,2,2,1] assert_true(nxt.is_threshold_sequence(deg)) G=nx.generators.havel_hakimi_graph(deg) assert_true(nxt.is_threshold_graph(G))
Example #4
Source File: test_function.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_neighbors_complete_graph(self): graph = nx.complete_graph(100) pop = random.sample(list(graph), 1) nbors = list(nx.neighbors(graph, pop[0])) # should be all the other vertices in the graph assert_equal(len(nbors), len(graph) - 1) graph = nx.path_graph(100) node = random.sample(list(graph), 1)[0] nbors = list(nx.neighbors(graph, node)) # should be all the other vertices in the graph if node != 0 and node != 99: assert_equal(len(nbors), 2) else: assert_equal(len(nbors), 1) # create a star graph with 99 outer nodes graph = nx.star_graph(99) nbors = list(nx.neighbors(graph, 0)) assert_equal(len(nbors), 99)
Example #5
Source File: test_function.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_non_edges(self): # All possible edges exist graph = nx.complete_graph(5) nedges = list(nx.non_edges(graph)) assert_equal(len(nedges), 0) graph = nx.path_graph(4) expected = [(0, 2), (0, 3), (1, 3)] nedges = list(nx.non_edges(graph)) for (u, v) in expected: assert_true((u, v) in nedges or (v, u) in nedges) graph = nx.star_graph(4) expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] nedges = list(nx.non_edges(graph)) for (u, v) in expected: assert_true((u, v) in nedges or (v, u) in nedges) # Directed graphs graph = nx.DiGraph() graph.add_edges_from([(0, 2), (2, 0), (2, 1)]) expected = [(0, 1), (1, 0), (1, 2)] nedges = list(nx.non_edges(graph)) for e in expected: assert_true(e in nedges)
Example #6
Source File: test_function.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_non_edges(self): # All possible edges exist graph = nx.complete_graph(5) nedges = list(nx.non_edges(graph)) assert_equal(len(nedges), 0) graph = nx.path_graph(4) expected = [(0, 2), (0, 3), (1, 3)] nedges = list(nx.non_edges(graph)) for (u, v) in expected: assert_true((u, v) in nedges or (v, u) in nedges) graph = nx.star_graph(4) expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] nedges = list(nx.non_edges(graph)) for (u, v) in expected: assert_true((u, v) in nedges or (v, u) in nedges) # Directed graphs graph = nx.DiGraph() graph.add_edges_from([(0, 2), (2, 0), (2, 1)]) expected = [(0, 1), (1, 0), (1, 2)] nedges = list(nx.non_edges(graph)) for e in expected: assert_true(e in nedges)
Example #7
Source File: test_function.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_neighbors(self): graph = nx.complete_graph(100) pop = random.sample(list(graph), 1) nbors = list(nx.neighbors(graph, pop[0])) # should be all the other vertices in the graph assert_equal(len(nbors), len(graph) - 1) graph = nx.path_graph(100) node = random.sample(list(graph), 1)[0] nbors = list(nx.neighbors(graph, node)) # should be all the other vertices in the graph if node != 0 and node != 99: assert_equal(len(nbors), 2) else: assert_equal(len(nbors), 1) # create a star graph with 99 outer nodes graph = nx.star_graph(99) nbors = list(nx.neighbors(graph, 0)) assert_equal(len(nbors), 99)
Example #8
Source File: test_ego.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_ego(self): G = nx.star_graph(3) H = nx.ego_graph(G, 0) assert_true(nx.is_isomorphic(G, H)) G.add_edge(1, 11) G.add_edge(2, 22) G.add_edge(3, 33) H = nx.ego_graph(G, 0) assert_true(nx.is_isomorphic(nx.star_graph(3), H)) G = nx.path_graph(3) H = nx.ego_graph(G, 0) assert_edges_equal(H.edges(), [(0, 1)]) H = nx.ego_graph(G, 0, undirected=True) assert_edges_equal(H.edges(), [(0, 1)]) H = nx.ego_graph(G, 0, center=False) assert_edges_equal(H.edges(), [])
Example #9
Source File: test_threshold.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_threshold_sequence_graph_test(self): G = nx.star_graph(10) assert_true(nxt.is_threshold_graph(G)) assert_true(nxt.is_threshold_sequence(list(d for n, d in G.degree()))) G = nx.complete_graph(10) assert_true(nxt.is_threshold_graph(G)) assert_true(nxt.is_threshold_sequence(list(d for n, d in G.degree()))) deg = [3, 2, 2, 1, 1, 1] assert_false(nxt.is_threshold_sequence(deg)) deg = [3, 2, 2, 1] assert_true(nxt.is_threshold_sequence(deg)) G = nx.generators.havel_hakimi_graph(deg) assert_true(nxt.is_threshold_graph(G))
Example #10
Source File: test_function.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_non_edges(self): # All possible edges exist graph = nx.complete_graph(5) nedges = list(nx.non_edges(graph)) assert_equal(len(nedges), 0) graph = nx.path_graph(4) expected = [(0, 2), (0, 3), (1, 3)] nedges = list(nx.non_edges(graph)) for (u, v) in expected: assert_true( (u, v) in nedges or (v, u) in nedges ) graph = nx.star_graph(4) expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] nedges = list(nx.non_edges(graph)) for (u, v) in expected: assert_true( (u, v) in nedges or (v, u) in nedges ) # Directed graphs graph = nx.DiGraph() graph.add_edges_from([(0, 2), (2, 0), (2, 1)]) expected = [(0, 1), (1, 0), (1, 2)] nedges = list(nx.non_edges(graph)) for e in expected: assert_true(e in nedges)
Example #11
Source File: test_function.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_neighbors(self): graph = nx.complete_graph(100) pop = random.sample(graph.nodes(), 1) nbors = list(nx.neighbors(graph, pop[0])) # should be all the other vertices in the graph assert_equal(len(nbors), len(graph) - 1) graph = nx.path_graph(100) node = random.sample(graph.nodes(), 1)[0] nbors = list(nx.neighbors(graph, node)) # should be all the other vertices in the graph if node != 0 and node != 99: assert_equal(len(nbors), 2) else: assert_equal(len(nbors), 1) # create a star graph with 99 outer nodes graph = nx.star_graph(99) nbors = list(nx.neighbors(graph, 0)) assert_equal(len(nbors), 99)
Example #12
Source File: test_ego.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_ego(self): G = nx.star_graph(3) H = nx.ego_graph(G, 0) assert_true(nx.is_isomorphic(G, H)) G.add_edge(1, 11) G.add_edge(2, 22) G.add_edge(3, 33) H = nx.ego_graph(G, 0) assert_true(nx.is_isomorphic(nx.star_graph(3), H)) G = nx.path_graph(3) H = nx.ego_graph(G, 0) assert_edges_equal(H.edges(), [(0, 1)]) H = nx.ego_graph(G, 0, undirected=True) assert_edges_equal(H.edges(), [(0, 1)]) H = nx.ego_graph(G, 0, center=False) assert_edges_equal(H.edges(), [])
Example #13
Source File: test_dominating_set.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_star_graph(self): """Tests that an approximate dominating set for the star graph, even when the center node does not have the smallest integer label, gives just the center node. For more information, see #1527. """ # Create a star graph in which the center node has the highest # label instead of the lowest. G = nx.star_graph(10) G = nx.relabel_nodes(G, {0: 9, 9: 0}) eq_(min_weighted_dominating_set(G), {9})
Example #14
Source File: test_vertex_cover.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_unweighted_undirected(self): # create a simple star graph size = 50 sg = nx.star_graph(size) cover = min_weighted_vertex_cover(sg) assert_equals(2, len(cover)) ok_(is_cover(sg, cover))
Example #15
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_single_edge_matching(self): # In the star graph, any maximal matching has just one edge. G = nx.star_graph(5) matching = nx.maximal_matching(G) assert_equal(1, len(matching)) assert_true(nx.is_maximal_matching(G, matching))
Example #16
Source File: test_line.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_star(self): G = nx.star_graph(5) L = nx.line_graph(G) assert_true(nx.is_isomorphic(L, nx.complete_graph(5)))
Example #17
Source File: test_function.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_non_neighbors(self): graph = nx.complete_graph(100) pop = random.sample(list(graph), 1) nbors = list(nx.non_neighbors(graph, pop[0])) # should be all the other vertices in the graph assert_equal(len(nbors), 0) graph = nx.path_graph(100) node = random.sample(list(graph), 1)[0] nbors = list(nx.non_neighbors(graph, node)) # should be all the other vertices in the graph if node != 0 and node != 99: assert_equal(len(nbors), 97) else: assert_equal(len(nbors), 98) # create a star graph with 99 outer nodes graph = nx.star_graph(99) nbors = list(nx.non_neighbors(graph, 0)) assert_equal(len(nbors), 0) # disconnected graph graph = nx.Graph() graph.add_nodes_from(range(10)) nbors = list(nx.non_neighbors(graph, 0)) assert_equal(len(nbors), 9)
Example #18
Source File: test_link_prediction.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_S4(self): G = nx.star_graph(4) G.nodes[0]['community'] = 1 G.nodes[1]['community'] = 1 G.nodes[2]['community'] = 1 G.nodes[3]['community'] = 0 G.nodes[4]['community'] = 0 self.test(G, [(1, 2)], [(1, 2, 1 / self.delta)])
Example #19
Source File: test_function.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_S4(self): G = nx.star_graph(4) self.test(G, 1, 2, [0])
Example #20
Source File: test_line.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_star(self): G = nx.star_graph(5) L = nx.line_graph(G) assert_true(nx.is_isomorphic(L, nx.complete_graph(5)))
Example #21
Source File: test_link_prediction.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_S4(self): G = nx.star_graph(4) G.nodes[0]['community'] = 1 G.nodes[1]['community'] = 1 G.nodes[2]['community'] = 1 G.nodes[3]['community'] = 0 G.nodes[4]['community'] = 0 self.test(G, [(1, 2)], [(1, 2, 0.25)])
Example #22
Source File: test_spectral_bipartivity.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_star_like(self): # star-like G=nx.star_graph(2) G.add_edge(1,2) assert_almost_equal(sb(G),0.843,places=3) G=nx.star_graph(3) G.add_edge(1,2) assert_almost_equal(sb(G),0.871,places=3) G=nx.star_graph(4) G.add_edge(1,2) assert_almost_equal(sb(G),0.890,places=3)
Example #23
Source File: test_cluster.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_star_graph(): G=nx.star_graph(3) # all modes are the same answer={0:0,1:1,2:1,3:1} assert_equal(bipartite.clustering(G,mode='dot'),answer) assert_equal(bipartite.clustering(G,mode='min'),answer) assert_equal(bipartite.clustering(G,mode='max'),answer)
Example #24
Source File: test_neighbor_degree.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_degree_barrat(self): G=nx.star_graph(5) G.add_edges_from([(5,6),(5,7),(5,8),(5,9)]) G[0][5]['weight']=5 nd = nx.average_neighbor_degree(G)[5] assert_equal(nd,1.8) nd = nx.average_neighbor_degree(G,weight='weight')[5] assert_almost_equal(nd,3.222222,places=5)
Example #25
Source File: test_connectivity.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_degree_barrat(self): G=nx.star_graph(5) G.add_edges_from([(5,6),(5,7),(5,8),(5,9)]) G[0][5]['weight']=5 nd = nx.average_degree_connectivity(G)[5] assert_equal(nd,1.8) nd = nx.average_degree_connectivity(G,weight='weight')[5] assert_almost_equal(nd,3.222222,places=5) nd = nx.k_nearest_neighbors(G,weight='weight')[5] assert_almost_equal(nd,3.222222,places=5)
Example #26
Source File: test_kcutsets.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_is_separating_set(): for i in [5, 10, 15]: G = nx.star_graph(i) max_degree_node = max(G, key=G.degree) assert_true(_is_separating_set(G, {max_degree_node}))
Example #27
Source File: test_link_prediction.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_S4(self): G = nx.star_graph(4) self.test(G, [(1, 2)], [(1, 2, 0.25)])
Example #28
Source File: test_link_prediction.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_S4(self): G = nx.star_graph(4) self.test(G, [(0, 2)], [(0, 2, 4)])
Example #29
Source File: test_link_prediction.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_S4(self): G = nx.star_graph(4) G.nodes[0]['community'] = 1 G.nodes[1]['community'] = 1 G.nodes[2]['community'] = 1 G.nodes[3]['community'] = 0 G.nodes[4]['community'] = 0 self.test(G, [(1, 2)], [(1, 2, 2)])
Example #30
Source File: test_link_prediction.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_S4(self): G = nx.star_graph(4) G.nodes[0]['community'] = 1 G.nodes[1]['community'] = 1 G.nodes[2]['community'] = 1 G.nodes[3]['community'] = 0 G.nodes[4]['community'] = 0 self.test(G, [(1, 2)], [(1, 2, 0.25)])