Python matplotlib.mlab.apply_window() Examples
The following are 30
code examples of matplotlib.mlab.apply_window().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.mlab
, or try the search function
.
Example #1
Source File: test_mlab.py From neural-network-animation with MIT License | 6 votes |
def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = mlab.apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08)
Example #2
Source File: test_mlab.py From ImageFusion with MIT License | 6 votes |
def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = mlab.apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08)
Example #3
Source File: test_mlab.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = mlab.apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08)
Example #4
Source File: test_mlab.py From coffeegrindsize with MIT License | 6 votes |
def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = mlab.apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08)
Example #5
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_1D_els_wrongsize_ValueError(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0]-1)) with pytest.raises(ValueError): mlab.apply_window(x, window)
Example #6
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_0D_ValueError(self): x = np.array(0) window = mlab.window_hanning with pytest.raises(ValueError): mlab.apply_window(x, window, axis=1, return_window=False)
Example #7
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_3D_ValueError(self): x = self.sig_rand[np.newaxis][np.newaxis] window = mlab.window_hanning with pytest.raises(ValueError): mlab.apply_window(x, window, axis=1, return_window=False)
Example #8
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_hanning_1D(self): x = self.sig_rand window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, return_window=True) yt = window(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2)
Example #9
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_hanning_1D(self): x = self.sig_rand window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, return_window=True) yt = window(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2)
Example #10
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_1D_axis1_ValueError(self): x = self.sig_rand window = mlab.window_hanning with pytest.raises(ValueError): mlab.apply_window(x, window, axis=1, return_window=False)
Example #11
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_hanning_els_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = window1(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06)
Example #12
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_0D_ValueError(self): x = np.array(0) window = mlab.window_hanning with pytest.raises(ValueError): mlab.apply_window(x, window, axis=1, return_window=False)
Example #13
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_3D_ValueError(self): x = self.sig_rand[np.newaxis][np.newaxis] window = mlab.window_hanning with pytest.raises(ValueError): mlab.apply_window(x, window, axis=1, return_window=False)
Example #14
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_hanning_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06)
Example #15
Source File: test_mlab.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_apply_window_hanning_els1_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06)
Example #16
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_hanning_2D_stack_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = mlab.apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08)
Example #17
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_hanning_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06)
Example #18
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_1D_els_wrongsize_ValueError(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0]-1)) with pytest.raises(ValueError): mlab.apply_window(x, window)
Example #19
Source File: test_mlab.py From coffeegrindsize with MIT License | 5 votes |
def test_apply_window_1D_axis1_ValueError(self): x = self.sig_rand window = mlab.window_hanning with pytest.raises(ValueError): mlab.apply_window(x, window, axis=1, return_window=False)
Example #20
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_2D_stack_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = mlab.apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08)
Example #21
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_stride_windows_hanning_2D_n13_noverlapn3_axis0(self): x = self.sig_rand window = mlab.window_hanning yi = mlab.stride_windows(x, n=13, noverlap=2, axis=0) y = mlab.apply_window(yi, window, axis=0, return_window=False) yt = self.check_window_apply_repeat(x, window, 13, 2) assert_equal(yt.shape, y.shape) assert_not_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06)
Example #22
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_2D_els3_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y = mlab.apply_window(x, window, axis=1, return_window=False) yt = mlab.apply_window(x, window1, axis=1, return_window=False) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06)
Example #23
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_2D_els2_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y, window2 = mlab.apply_window(x, window, axis=1, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1 * x[i, :] assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2)
Example #24
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_2D__els1_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning(np.ones(x.shape[1])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1(x[i, :]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06)
Example #25
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_els3_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, axis=0, return_window=True) yt = mlab.apply_window(x, window1, axis=0, return_window=False) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2)
Example #26
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_els2_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, axis=0, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1*x[:, i] assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2)
Example #27
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_els1_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1(x[:, i]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06)
Example #28
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window(x[:, i]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06)
Example #29
Source File: test_mlab.py From ImageFusion with MIT License | 5 votes |
def test_apply_window_hanning_els_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = window1(x) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06)
Example #30
Source File: test_mlab.py From neural-network-animation with MIT License | 5 votes |
def test_apply_window_1D_axis1_ValueError(self): x = self.sig_rand window = mlab.window_hanning assert_raises(ValueError, mlab.apply_window, x, window, axis=1, return_window=False)