Python tensorflow.python.util.compat.as_text() Examples
The following are 30
code examples of tensorflow.python.util.compat.as_text().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.util.compat
, or try the search function
.
Example #1
Source File: session.py From lambda-packs with MIT License | 6 votes |
def _do_call(self, fn, *args): try: return fn(*args) except errors.OpError as e: message = compat.as_text(e.message) m = BaseSession._NODEDEF_NAME_RE.search(message) node_def = None op = None if m is not None: node_name = m.group(1) try: op = self._graph.get_operation_by_name(node_name) node_def = op.node_def except KeyError: pass raise type(e)(node_def, op, message)
Example #2
Source File: grpc_debug_test_server.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _write_value_event(self, event): value = event.summary.value[0] # Obtain the device name from the metadata. summary_metadata = event.summary.value[0].metadata if not summary_metadata.plugin_data: raise ValueError("The value lacks plugin data.") try: content = json.loads(compat.as_text(summary_metadata.plugin_data.content)) except ValueError as err: raise ValueError("Could not parse content into JSON: %r, %r" % (content, err)) device_name = content["device"] dump_full_path = _get_dump_file_path( self._dump_dir, device_name, value.node_name) self._try_makedirs(os.path.dirname(dump_full_path)) with open(dump_full_path, "wb") as f: f.write(event.SerializeToString())
Example #3
Source File: saved_model_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testNoOverwrite(self): export_dir = os.path.join(tf.test.get_temp_dir(), "test_no_overwrite") builder = saved_model_builder.SavedModelBuilder(export_dir) # Graph with a single variable. SavedModel invoked to: # - add with weights. with self.test_session(graph=tf.Graph()) as sess: self._init_and_validate_variable(sess, "v", 42) builder.add_meta_graph_and_variables(sess, ["foo"]) # Save the SavedModel to disk in text format. builder.save(as_text=True) # Restore the graph with tag "foo", whose variables were saved. with self.test_session(graph=tf.Graph()) as sess: loader.load(sess, ["foo"], export_dir) self.assertEqual( 42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval()) # An attempt to create another builder with the same export directory should # result in an assertion error. self.assertRaises(AssertionError, saved_model_builder.SavedModelBuilder, export_dir)
Example #4
Source File: saved_model_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _validate_asset_collection(self, export_dir, graph_collection_def, expected_asset_file_name, expected_asset_file_contents, expected_asset_tensor_name): assets_any = graph_collection_def[constants.ASSETS_KEY].any_list.value asset = meta_graph_pb2.AssetFileDef() assets_any[0].Unpack(asset) assets_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes(constants.ASSETS_DIRECTORY), compat.as_bytes(expected_asset_file_name)) actual_asset_contents = file_io.read_file_to_string(assets_path) self.assertEqual(expected_asset_file_contents, compat.as_text(actual_asset_contents)) self.assertEqual(expected_asset_file_name, asset.filename) self.assertEqual(expected_asset_tensor_name, asset.tensor_info.name)
Example #5
Source File: session.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _do_call(self, fn, *args): try: return fn(*args) except errors.OpError as e: message = compat.as_text(e.message) m = BaseSession._NODEDEF_NAME_RE.search(message) node_def = None op = None if m is not None: node_name = m.group(1) try: op = self._graph.get_operation_by_name(node_name) node_def = op.node_def except KeyError: pass raise type(e)(node_def, op, message)
Example #6
Source File: saved_model_test.py From keras-lambda with MIT License | 6 votes |
def _validate_asset_collection(self, export_dir, graph_collection_def, expected_asset_file_name, expected_asset_file_contents, expected_asset_tensor_name): assets_any = graph_collection_def[constants.ASSETS_KEY].any_list.value asset = meta_graph_pb2.AssetFileDef() assets_any[0].Unpack(asset) assets_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes(constants.ASSETS_DIRECTORY), compat.as_bytes(expected_asset_file_name)) actual_asset_contents = file_io.read_file_to_string(assets_path) self.assertEqual(expected_asset_file_contents, compat.as_text(actual_asset_contents)) self.assertEqual(expected_asset_file_name, asset.filename) self.assertEqual(expected_asset_tensor_name, asset.tensor_info.name)
Example #7
Source File: session.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _do_call(self, fn, *args): try: return fn(*args) except errors.OpError as e: message = compat.as_text(e.message) m = BaseSession._NODEDEF_NAME_RE.search(message) node_def = None op = None if m is not None: node_name = m.group(1) try: op = self._graph.get_operation_by_name(node_name) node_def = op.node_def except KeyError: pass raise type(e)(node_def, op, message)
Example #8
Source File: saved_model_test.py From keras-lambda with MIT License | 6 votes |
def testNoOverwrite(self): export_dir = os.path.join(test.get_temp_dir(), "test_no_overwrite") builder = saved_model_builder.SavedModelBuilder(export_dir) # Graph with a single variable. SavedModel invoked to: # - add with weights. with self.test_session(graph=ops.Graph()) as sess: self._init_and_validate_variable(sess, "v", 42) builder.add_meta_graph_and_variables(sess, ["foo"]) # Save the SavedModel to disk in text format. builder.save(as_text=True) # Restore the graph with tag "foo", whose variables were saved. with self.test_session(graph=ops.Graph()) as sess: loader.load(sess, ["foo"], export_dir) self.assertEqual( 42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval()) # An attempt to create another builder with the same export directory should # result in an assertion error. self.assertRaises(AssertionError, saved_model_builder.SavedModelBuilder, export_dir)
Example #9
Source File: saved_model_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testNoOverwrite(self): export_dir = os.path.join(test.get_temp_dir(), "test_no_overwrite") builder = saved_model_builder.SavedModelBuilder(export_dir) # Graph with a single variable. SavedModel invoked to: # - add with weights. with self.test_session(graph=ops.Graph()) as sess: self._init_and_validate_variable(sess, "v", 42) builder.add_meta_graph_and_variables(sess, ["foo"]) # Save the SavedModel to disk in text format. builder.save(as_text=True) # Restore the graph with tag "foo", whose variables were saved. with self.test_session(graph=ops.Graph()) as sess: loader.load(sess, ["foo"], export_dir) self.assertEqual( 42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval()) # An attempt to create another builder with the same export directory should # result in an assertion error. self.assertRaises(AssertionError, saved_model_builder.SavedModelBuilder, export_dir)
Example #10
Source File: saved_model_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _validate_asset_collection(self, export_dir, graph_collection_def, expected_asset_file_name, expected_asset_file_contents, expected_asset_tensor_name): assets_any = graph_collection_def[constants.ASSETS_KEY].any_list.value asset = meta_graph_pb2.AssetFileDef() assets_any[0].Unpack(asset) assets_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes(constants.ASSETS_DIRECTORY), compat.as_bytes(expected_asset_file_name)) actual_asset_contents = file_io.read_file_to_string(assets_path) self.assertEqual(expected_asset_file_contents, compat.as_text(actual_asset_contents)) self.assertEqual(expected_asset_file_name, asset.filename) self.assertEqual(expected_asset_tensor_name, asset.tensor_info.name)
Example #11
Source File: session.py From keras-lambda with MIT License | 6 votes |
def _do_call(self, fn, *args): try: return fn(*args) except errors.OpError as e: message = compat.as_text(e.message) m = BaseSession._NODEDEF_NAME_RE.search(message) node_def = None op = None if m is not None: node_name = m.group(1) try: op = self._graph.get_operation_by_name(node_name) node_def = op.node_def except KeyError: pass raise type(e)(node_def, op, message)
Example #12
Source File: saved_model_test.py From keras-lambda with MIT License | 5 votes |
def testSaveAsText(self): export_dir = os.path.join(test.get_temp_dir(), "test_astext") builder = saved_model_builder.SavedModelBuilder(export_dir) # Graph with a single variable. SavedModel invoked to: # - add with weights. with self.test_session(graph=ops.Graph()) as sess: self._init_and_validate_variable(sess, "v", 42) builder.add_meta_graph_and_variables(sess, ["foo"]) # Graph with the same single variable. SavedModel invoked to: # - simply add the model (weights are not updated). with self.test_session(graph=ops.Graph()) as sess: self._init_and_validate_variable(sess, "v", 43) builder.add_meta_graph(["bar"]) # Save the SavedModel to disk in text format. builder.save(as_text=True) # Restore the graph with tag "foo", whose variables were saved. with self.test_session(graph=ops.Graph()) as sess: loader.load(sess, ["foo"], export_dir) self.assertEqual( 42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval()) # Restore the graph with tag "bar", whose variables were not saved. with self.test_session(graph=ops.Graph()) as sess: loader.load(sess, ["bar"], export_dir) self.assertEqual( 42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())
Example #13
Source File: builder_impl.py From keras-lambda with MIT License | 5 votes |
def save(self, as_text=False): """Writes a `SavedModel` protocol buffer to disk. The function writes the SavedModel protocol buffer to the export directory in serialized format. Args: as_text: Writes the SavedModel protocol buffer in text format to disk. Returns: The path to which the SavedModel protocol buffer was written. """ if not file_io.file_exists(self._export_dir): file_io.recursive_create_dir(self._export_dir) if as_text: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)) file_io.write_string_to_file(path, str(self._saved_model)) else: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, self._saved_model.SerializeToString()) tf_logging.info("SavedModel written to: %s", path) return path
Example #14
Source File: builder_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def save(self, as_text=False): """Writes a `SavedModel` protocol buffer to disk. The function writes the SavedModel protocol buffer to the export directory in serialized format. Args: as_text: Writes the SavedModel protocol buffer in text format to disk. Returns: The path to which the SavedModel protocol buffer was written. """ if not file_io.file_exists(self._export_dir): file_io.recursive_create_dir(self._export_dir) if as_text: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)) file_io.write_string_to_file(path, str(self._saved_model)) else: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, self._saved_model.SerializeToString()) tf_logging.info("SavedModel written to: %s", path) return path
Example #15
Source File: load_library.py From keras-lambda with MIT License | 5 votes |
def load_file_system_library(library_filename): """Loads a TensorFlow plugin, containing file system implementation. Pass `library_filename` to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: None. Raises: RuntimeError: when unable to load the library. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status)
Example #16
Source File: builder_impl.py From lambda-packs with MIT License | 5 votes |
def save(self, as_text=False): """Writes a `SavedModel` protocol buffer to disk. The function writes the SavedModel protocol buffer to the export directory in serialized format. Args: as_text: Writes the SavedModel protocol buffer in text format to disk. Returns: The path to which the SavedModel protocol buffer was written. """ if not file_io.file_exists(self._export_dir): file_io.recursive_create_dir(self._export_dir) if as_text: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)) file_io.write_string_to_file(path, str(self._saved_model)) else: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, self._saved_model.SerializeToString()) tf_logging.info("SavedModel written to: %s", path) return path
Example #17
Source File: json_util.py From keras-lambda with MIT License | 5 votes |
def Cleanse(obj, encoding='utf-8'): """Makes Python object appropriate for JSON serialization. - Replaces instances of Infinity/-Infinity/NaN with strings. - Turns byte strings into unicode strings. - Turns sets into sorted lists. - Turns tuples into lists. Args: obj: Python data structure. encoding: Charset used to decode byte strings. Returns: Unicode JSON data structure. """ if isinstance(obj, int): return obj elif isinstance(obj, float): if obj == _INFINITY: return 'Infinity' elif obj == _NEGATIVE_INFINITY: return '-Infinity' elif math.isnan(obj): return 'NaN' else: return obj elif isinstance(obj, bytes): return compat.as_text(obj, encoding) elif isinstance(obj, list) or isinstance(obj, tuple): return [Cleanse(i, encoding) for i in obj] elif isinstance(obj, set): return [Cleanse(i, encoding) for i in sorted(obj)] elif isinstance(obj, dict): return {Cleanse(k, encoding): Cleanse(v, encoding) for k, v in obj.items()} else: return obj
Example #18
Source File: debug_data.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def device_name_to_device_path(device_name): """Convert device name to device path.""" device_name_items = compat.as_text(device_name).split("/") device_name_items = [item.replace(":", "_") for item in device_name_items] return METADATA_FILE_PREFIX + DEVICE_TAG + ",".join(device_name_items)
Example #19
Source File: json_util.py From tensorlang with Apache License 2.0 | 5 votes |
def Cleanse(obj, encoding='utf-8'): """Makes Python object appropriate for JSON serialization. - Replaces instances of Infinity/-Infinity/NaN with strings. - Turns byte strings into unicode strings. - Turns sets into sorted lists. - Turns tuples into lists. Args: obj: Python data structure. encoding: Charset used to decode byte strings. Returns: Unicode JSON data structure. """ if isinstance(obj, int): return obj elif isinstance(obj, float): if obj == _INFINITY: return 'Infinity' elif obj == _NEGATIVE_INFINITY: return '-Infinity' elif math.isnan(obj): return 'NaN' else: return obj elif isinstance(obj, bytes): return compat.as_text(obj, encoding) elif isinstance(obj, list) or isinstance(obj, tuple): return [Cleanse(i, encoding) for i in obj] elif isinstance(obj, set): return [Cleanse(i, encoding) for i in sorted(obj)] elif isinstance(obj, dict): return {Cleanse(k, encoding): Cleanse(v, encoding) for k, v in obj.items()} else: return obj
Example #20
Source File: ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def _get_test_attrs(self): x = control_flow_ops.no_op() try: a = compat.as_text(x.get_attr("_A")) except ValueError: a = None try: b = compat.as_text(x.get_attr("_B")) except ValueError: b = None print(a, b) return (a, b)
Example #21
Source File: load_library.py From deep_image_model with Apache License 2.0 | 5 votes |
def load_file_system_library(library_filename): """Loads a TensorFlow plugin, containing file system implementation. Pass `library_filename` to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: None. Raises: RuntimeError: when unable to load the library. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status)
Example #22
Source File: errors_impl.py From deep_image_model with Apache License 2.0 | 5 votes |
def raise_exception_on_not_ok_status(): try: status = pywrap_tensorflow.TF_NewStatus() yield status if pywrap_tensorflow.TF_GetCode(status) != 0: raise _make_specific_exception( None, None, compat.as_text(pywrap_tensorflow.TF_Message(status)), pywrap_tensorflow.TF_GetCode(status)) finally: pywrap_tensorflow.TF_DeleteStatus(status)
Example #23
Source File: events_writer_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testWriteEvents(self): file_prefix = os.path.join(self.get_temp_dir(), "events") writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(file_prefix)) filename = compat.as_text(writer.FileName()) event_written = event_pb2.Event( wall_time=123.45, step=67, summary=summary_pb2.Summary( value=[summary_pb2.Summary.Value(tag="foo", simple_value=89.0)])) writer.WriteEvent(event_written) writer.Flush() writer.Close() with self.assertRaises(errors.NotFoundError): for r in tf_record.tf_record_iterator(filename + "DOES_NOT_EXIST"): self.assertTrue(False) reader = tf_record.tf_record_iterator(filename) event_read = event_pb2.Event() event_read.ParseFromString(next(reader)) self.assertTrue(event_read.HasField("file_version")) event_read.ParseFromString(next(reader)) # Second event self.assertProtoEquals(""" wall_time: 123.45 step: 67 summary { value { tag: 'foo' simple_value: 89.0 } } """, event_read) with self.assertRaises(StopIteration): next(reader)
Example #24
Source File: saved_model_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSaveAsText(self): export_dir = os.path.join(tf.test.get_temp_dir(), "test_astext") builder = saved_model_builder.SavedModelBuilder(export_dir) # Graph with a single variable. SavedModel invoked to: # - add with weights. with self.test_session(graph=tf.Graph()) as sess: self._init_and_validate_variable(sess, "v", 42) builder.add_meta_graph_and_variables(sess, ["foo"]) # Graph with the same single variable. SavedModel invoked to: # - simply add the model (weights are not updated). with self.test_session(graph=tf.Graph()) as sess: self._init_and_validate_variable(sess, "v", 43) builder.add_meta_graph(["bar"]) # Save the SavedModel to disk in text format. builder.save(as_text=True) # Restore the graph with tag "foo", whose variables were saved. with self.test_session(graph=tf.Graph()) as sess: loader.load(sess, ["foo"], export_dir) self.assertEqual( 42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval()) # Restore the graph with tag "bar", whose variables were not saved. with self.test_session(graph=tf.Graph()) as sess: loader.load(sess, ["bar"], export_dir) self.assertEqual( 42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval())
Example #25
Source File: builder.py From deep_image_model with Apache License 2.0 | 5 votes |
def save(self, as_text=False): """Writes a `SavedModel` protocol buffer to disk. The function writes the SavedModel protocol buffer to the export directory in serialized format. Args: as_text: Writes the SavedModel protocol buffer in text format to disk. Returns: The path to which the SavedModel protocol buffer was written. """ if not file_io.file_exists(self._export_dir): file_io.recursive_create_dir(self._export_dir) if as_text: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)) file_io.write_string_to_file(path, str(self._saved_model)) else: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, self._saved_model.SerializeToString()) tf_logging.info("SavedModel written to: %s", path) return path
Example #26
Source File: json_util.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def Cleanse(obj, encoding='utf-8'): """Makes Python object appropriate for JSON serialization. - Replaces instances of Infinity/-Infinity/NaN with strings. - Turns byte strings into unicode strings. - Turns sets into sorted lists. - Turns tuples into lists. Args: obj: Python data structure. encoding: Charset used to decode byte strings. Returns: Unicode JSON data structure. """ if isinstance(obj, int): return obj elif isinstance(obj, float): if obj == _INFINITY: return 'Infinity' elif obj == _NEGATIVE_INFINITY: return '-Infinity' elif math.isnan(obj): return 'NaN' else: return obj elif isinstance(obj, bytes): return compat.as_text(obj, encoding) elif isinstance(obj, list) or isinstance(obj, tuple): return [Cleanse(i, encoding) for i in obj] elif isinstance(obj, set): return [Cleanse(i, encoding) for i in sorted(obj)] elif isinstance(obj, dict): return {Cleanse(k, encoding): Cleanse(v, encoding) for k, v in obj.items()} else: return obj
Example #27
Source File: load_library.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def load_file_system_library(library_filename): """Loads a TensorFlow plugin, containing file system implementation. Pass `library_filename` to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: None. Raises: RuntimeError: when unable to load the library. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status)
Example #28
Source File: saved_model_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def testSaveAsText(self): export_dir = os.path.join(test.get_temp_dir(), "test_astext") builder = saved_model_builder.SavedModelBuilder(export_dir) # Graph with a single variable. SavedModel invoked to: # - add with weights. with self.test_session(graph=ops.Graph()) as sess: self._init_and_validate_variable(sess, "v", 42) builder.add_meta_graph_and_variables(sess, ["foo"]) # Graph with the same single variable. SavedModel invoked to: # - simply add the model (weights are not updated). with self.test_session(graph=ops.Graph()) as sess: self._init_and_validate_variable(sess, "v", 43) builder.add_meta_graph(["bar"]) # Save the SavedModel to disk in text format. builder.save(as_text=True) # Restore the graph with tag "foo", whose variables were saved. with self.test_session(graph=ops.Graph()) as sess: loader.load(sess, ["foo"], export_dir) self.assertEqual( 42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval()) # Restore the graph with tag "bar", whose variables were not saved. with self.test_session(graph=ops.Graph()) as sess: loader.load(sess, ["bar"], export_dir) self.assertEqual( 42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())
Example #29
Source File: builder_impl.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def save(self, as_text=False): """Writes a `SavedModel` protocol buffer to disk. The function writes the SavedModel protocol buffer to the export directory in serialized format. Args: as_text: Writes the SavedModel protocol buffer in text format to disk. Returns: The path to which the SavedModel protocol buffer was written. """ if not file_io.file_exists(self._export_dir): file_io.recursive_create_dir(self._export_dir) if as_text: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)) file_io.write_string_to_file(path, str(self._saved_model)) else: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, self._saved_model.SerializeToString()) tf_logging.info("SavedModel written to: %s", path) return path
Example #30
Source File: load_library.py From lambda-packs with MIT License | 5 votes |
def load_file_system_library(library_filename): """Loads a TensorFlow plugin, containing file system implementation. Pass `library_filename` to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: None. Raises: RuntimeError: when unable to load the library. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status)