Python dataset.load_dataset() Examples
The following are 10
code examples of dataset.load_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dataset
, or try the search function
.
Example #1
Source File: save_pred_seg_as_nifti.py From BraTS2017 with Apache License 2.0 | 6 votes |
def save_train_dataset_as_nifti(results_dir=os.path.join(paths.results_folder, "final"), out_dir=os.path.join(paths.results_folder, "training_set_results")): if not os.path.isdir(out_dir): os.mkdir(out_dir) a = load_dataset() for fold in range(5): working_dir = os.path.join(results_dir, "fold%d"%fold, "validation") ids_in_fold = os.listdir(working_dir) ids_in_fold.sort() ids_in_fold = [i for i in ids_in_fold if os.path.isdir(os.path.join(working_dir, i))] ids_in_fold_as_int = [int(i) for i in ids_in_fold] for pat_id in ids_in_fold_as_int: pat_in_dataset = a[pat_id] seg_pred = np.load(os.path.join(working_dir, "%03.0d"%pat_id, "segs.npz"))['seg_pred'] b = convert_to_original_coord_system(seg_pred, pat_in_dataset) sitk_img = sitk.GetImageFromArray(b) sitk_img.SetSpacing(pat_in_dataset['spacing']) sitk_img.SetDirection(pat_in_dataset['direction']) sitk_img.SetOrigin(pat_in_dataset['origin']) sitk.WriteImage(sitk_img, os.path.join(out_dir, pat_in_dataset['name'] + ".nii.gz"))
Example #2
Source File: save_pred_seg_as_nifti.py From BraTS2017 with Apache License 2.0 | 6 votes |
def save_val_dataset_as_nifti(results_dir=os.path.join(paths.results_folder, "final"), out_dir=os.path.join(paths.results_folder, "val_set_results_new")): if not os.path.isdir(out_dir): os.mkdir(out_dir) a = load_dataset(folder=paths.preprocessed_validation_data_folder) for pat in a.keys(): probs = [] for fold in range(5): working_dir = os.path.join(results_dir, "fold%d"%fold, "pred_val_set") res = np.load(os.path.join(working_dir, "%03.0d"%pat, "segs.npz")) probs.append(res['softmax_ouput'][None]) prediction = np.vstack(probs).mean(0).argmax(0) prediction_new = convert_to_brats_seg(prediction) np.savez_compressed(os.path.join(out_dir, "%03.0d.npz"%pat), seg=prediction) b = convert_to_original_coord_system(prediction_new, a[pat]) sitk_img = sitk.GetImageFromArray(b) sitk_img.SetSpacing(a[pat]['spacing']) sitk_img.SetDirection(a[pat]['direction']) sitk_img.SetOrigin(a[pat]['origin']) sitk.WriteImage(sitk_img, os.path.join(out_dir, a[pat]['name'] + ".nii.gz"))
Example #3
Source File: save_pred_seg_as_nifti.py From BraTS2017 with Apache License 2.0 | 6 votes |
def save_test_set_as_nifti(results_dir=os.path.join(paths.results_folder, "final"), out_dir=os.path.join(paths.results_folder, "test_set_results")): if not os.path.isdir(out_dir): os.mkdir(out_dir) a = load_dataset(folder=paths.preprocessed_testing_data_folder) for pat in a.keys(): probs = [] for fold in range(5): working_dir = os.path.join(results_dir, "fold%d"%fold, "pred_test_set") res = np.load(os.path.join(working_dir, "%03.0d"%pat, "segs.npz")) probs.append(res['softmax_ouput'][None]) prediction = np.vstack(probs).mean(0).argmax(0) prediction_new = convert_to_brats_seg(prediction) np.savez_compressed(os.path.join(out_dir, "%03.0d.npz"%pat), seg=prediction) b = convert_to_original_coord_system(prediction_new, a[pat]) sitk_img = sitk.GetImageFromArray(b) sitk_img.SetSpacing(a[pat]['spacing']) sitk_img.SetDirection(a[pat]['direction']) sitk_img.SetOrigin(a[pat]['origin']) sitk.WriteImage(sitk_img, os.path.join(out_dir, a[pat]['name'] + ".nii.gz"))
Example #4
Source File: sign.py From dgl with Apache License 2.0 | 5 votes |
def prepare_data(device, args): data = load_dataset(args.dataset) g, features, labels, n_classes, train_nid, val_nid, test_nid = data in_feats = features.shape[1] feats = preprocess(g, features, args, device) # move to device labels = labels.to(device) train_nid = train_nid.to(device) val_nid = val_nid.to(device) test_nid = test_nid.to(device) train_feats = [x[train_nid] for x in feats] train_labels = labels[train_nid] return feats, labels, train_feats, train_labels, in_feats, \ n_classes, train_nid, val_nid, test_nid
Example #5
Source File: predict_test_set.py From BraTS2017 with Apache License 2.0 | 5 votes |
def run(fold=0): print fold I_AM_FOLD = fold all_data = load_dataset(folder=paths.preprocessed_testing_data_folder) use_patients = all_data experiment_name = "final" results_folder = os.path.join(paths.results_folder, experiment_name, "fold%d"%I_AM_FOLD) write_images = False save_npy = True INPUT_PATCH_SIZE =(None, None, None) BATCH_SIZE = 2 n_repeats=3 num_classes=4 x_sym = T.tensor5() net, seg_layer = build_net(x_sym, INPUT_PATCH_SIZE, num_classes, 4, 16, batch_size=BATCH_SIZE, do_instance_norm=True) output_layer = seg_layer results_out_folder = os.path.join(results_folder, "pred_test_set") if not os.path.isdir(results_out_folder): os.mkdir(results_out_folder) with open(os.path.join(results_folder, "%s_Params.pkl" % (experiment_name)), 'r') as f: params = cPickle.load(f) lasagne.layers.set_all_param_values(output_layer, params) print "compiling theano functions" output = softmax_helper(lasagne.layers.get_output(output_layer, x_sym, deterministic=False, batch_norm_update_averages=False, batch_norm_use_averages=False)) pred_fn = theano.function([x_sym], output) _ = pred_fn(np.random.random((BATCH_SIZE, 4, 176, 192, 176)).astype(np.float32)) run_validation_mirroring(pred_fn, results_out_folder, use_patients, write_images=write_images, hasBrainMask=False, BATCH_SIZE=BATCH_SIZE, num_repeats=n_repeats, preprocess_fn=preprocess, save_npy=save_npy, save_proba=False)
Example #6
Source File: misc.py From disentangling_conditional_gans with MIT License | 4 votes |
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment result_subdir = locate_result_subdir(run_id) # Parse config.txt. parsed_cfg = dict() with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f: for line in f: if line.startswith('dataset =') or line.startswith('train ='): exec(line, parsed_cfg, parsed_cfg) dataset_cfg = parsed_cfg.get('dataset', dict()) train_cfg = parsed_cfg.get('train', dict()) mirror_augment = train_cfg.get('mirror_augment', False) # Handle legacy options. if 'h5_path' in dataset_cfg: dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '') if 'mirror_augment' in dataset_cfg: mirror_augment = dataset_cfg.pop('mirror_augment') if 'max_labels' in dataset_cfg: v = dataset_cfg.pop('max_labels') if v is None: v = 0 if v == 'all': v = 'full' dataset_cfg['max_label_size'] = v if 'max_images' in dataset_cfg: dataset_cfg.pop('max_images') # Handle legacy dataset names. v = dataset_cfg['tfrecord_dir'] v = v.replace('-32x32', '').replace('-32', '') v = v.replace('-128x128', '').replace('-128', '') v = v.replace('-256x256', '').replace('-256', '') v = v.replace('-1024x1024', '').replace('-1024', '') v = v.replace('celeba-hq', 'celebahq') v = v.replace('cifar-10', 'cifar10') v = v.replace('cifar-100', 'cifar100') v = v.replace('mnist-rgb', 'mnistrgb') v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v) v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v) dataset_cfg['tfrecord_dir'] = v # Load dataset. dataset_cfg.update(kwargs) dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg) return dataset_obj, mirror_augment
Example #7
Source File: misc.py From transparent_latent_gan with MIT License | 4 votes |
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment result_subdir = locate_result_subdir(run_id) # Parse config.txt. parsed_cfg = dict() with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f: for line in f: if line.startswith('dataset =') or line.startswith('train ='): exec(line, parsed_cfg, parsed_cfg) dataset_cfg = parsed_cfg.get('dataset', dict()) train_cfg = parsed_cfg.get('train', dict()) mirror_augment = train_cfg.get('mirror_augment', False) # Handle legacy options. if 'h5_path' in dataset_cfg: dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '') if 'mirror_augment' in dataset_cfg: mirror_augment = dataset_cfg.pop('mirror_augment') if 'max_labels' in dataset_cfg: v = dataset_cfg.pop('max_labels') if v is None: v = 0 if v == 'all': v = 'full' dataset_cfg['max_label_size'] = v if 'max_images' in dataset_cfg: dataset_cfg.pop('max_images') # Handle legacy dataset names. v = dataset_cfg['tfrecord_dir'] v = v.replace('-32x32', '').replace('-32', '') v = v.replace('-128x128', '').replace('-128', '') v = v.replace('-256x256', '').replace('-256', '') v = v.replace('-1024x1024', '').replace('-1024', '') v = v.replace('celeba-hq', 'celebahq') v = v.replace('cifar-10', 'cifar10') v = v.replace('cifar-100', 'cifar100') v = v.replace('mnist-rgb', 'mnistrgb') v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v) v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v) dataset_cfg['tfrecord_dir'] = v # Load dataset. dataset_cfg.update(kwargs) dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg) return dataset_obj, mirror_augment
Example #8
Source File: misc.py From higan with MIT License | 4 votes |
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment result_subdir = locate_result_subdir(run_id) # Parse config.txt. parsed_cfg = dict() with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f: for line in f: if line.startswith('dataset =') or line.startswith('train ='): exec(line, parsed_cfg, parsed_cfg) dataset_cfg = parsed_cfg.get('dataset', dict()) train_cfg = parsed_cfg.get('train', dict()) mirror_augment = train_cfg.get('mirror_augment', False) # Handle legacy options. if 'h5_path' in dataset_cfg: dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '') if 'mirror_augment' in dataset_cfg: mirror_augment = dataset_cfg.pop('mirror_augment') if 'max_labels' in dataset_cfg: v = dataset_cfg.pop('max_labels') if v is None: v = 0 if v == 'all': v = 'full' dataset_cfg['max_label_size'] = v if 'max_images' in dataset_cfg: dataset_cfg.pop('max_images') # Handle legacy dataset names. v = dataset_cfg['tfrecord_dir'] v = v.replace('-32x32', '').replace('-32', '') v = v.replace('-128x128', '').replace('-128', '') v = v.replace('-256x256', '').replace('-256', '') v = v.replace('-1024x1024', '').replace('-1024', '') v = v.replace('celeba-hq', 'celebahq') v = v.replace('cifar-10', 'cifar10') v = v.replace('cifar-100', 'cifar100') v = v.replace('mnist-rgb', 'mnistrgb') v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v) v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v) dataset_cfg['tfrecord_dir'] = v # Load dataset. dataset_cfg.update(kwargs) dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg) return dataset_obj, mirror_augment
Example #9
Source File: misc.py From interfacegan with MIT License | 4 votes |
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment result_subdir = locate_result_subdir(run_id) # Parse config.txt. parsed_cfg = dict() with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f: for line in f: if line.startswith('dataset =') or line.startswith('train ='): exec(line, parsed_cfg, parsed_cfg) dataset_cfg = parsed_cfg.get('dataset', dict()) train_cfg = parsed_cfg.get('train', dict()) mirror_augment = train_cfg.get('mirror_augment', False) # Handle legacy options. if 'h5_path' in dataset_cfg: dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '') if 'mirror_augment' in dataset_cfg: mirror_augment = dataset_cfg.pop('mirror_augment') if 'max_labels' in dataset_cfg: v = dataset_cfg.pop('max_labels') if v is None: v = 0 if v == 'all': v = 'full' dataset_cfg['max_label_size'] = v if 'max_images' in dataset_cfg: dataset_cfg.pop('max_images') # Handle legacy dataset names. v = dataset_cfg['tfrecord_dir'] v = v.replace('-32x32', '').replace('-32', '') v = v.replace('-128x128', '').replace('-128', '') v = v.replace('-256x256', '').replace('-256', '') v = v.replace('-1024x1024', '').replace('-1024', '') v = v.replace('celeba-hq', 'celebahq') v = v.replace('cifar-10', 'cifar10') v = v.replace('cifar-100', 'cifar100') v = v.replace('mnist-rgb', 'mnistrgb') v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v) v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v) dataset_cfg['tfrecord_dir'] = v # Load dataset. dataset_cfg.update(kwargs) dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg) return dataset_obj, mirror_augment
Example #10
Source File: validate_network.py From BraTS2017 with Apache License 2.0 | 4 votes |
def run(fold=0): print fold I_AM_FOLD = fold all_data = load_dataset() keys_sorted = np.sort(all_data.keys()) crossval_folds = KFold(len(all_data.keys()), n_folds=5, shuffle=True, random_state=123456) ctr = 0 for train_idx, test_idx in crossval_folds: print len(train_idx), len(test_idx) if ctr == I_AM_FOLD: test_keys = [keys_sorted[i] for i in test_idx] break ctr += 1 validation_data = {i:all_data[i] for i in test_keys} use_patients = validation_data EXPERIMENT_NAME = "final" results_folder = os.path.join(paths.results_folder, EXPERIMENT_NAME, "fold%d" % I_AM_FOLD) write_images = False save_npy = True INPUT_PATCH_SIZE =(None, None, None) BATCH_SIZE = 2 n_repeats=2 num_classes=4 x_sym = T.tensor5() net, seg_layer = build_net(x_sym, INPUT_PATCH_SIZE, num_classes, 4, 16, batch_size=BATCH_SIZE, do_instance_norm=True) output_layer = seg_layer results_out_folder = os.path.join(results_folder, "validation") if not os.path.isdir(results_out_folder): os.mkdir(results_out_folder) with open(os.path.join(results_folder, "%s_Params.pkl" % (EXPERIMENT_NAME)), 'r') as f: params = cPickle.load(f) lasagne.layers.set_all_param_values(output_layer, params) print "compiling theano functions" output = softmax_helper(lasagne.layers.get_output(output_layer, x_sym, deterministic=False, batch_norm_update_averages=False, batch_norm_use_averages=False)) pred_fn = theano.function([x_sym], output) _ = pred_fn(np.random.random((BATCH_SIZE, 4, 176, 192, 176)).astype(np.float32)) # preallocate memory on GPU run_validation_mirroring(pred_fn, results_out_folder, use_patients, write_images=write_images, hasBrainMask=False, BATCH_SIZE=BATCH_SIZE, num_repeats=n_repeats, preprocess_fn=preprocess, save_npy=save_npy)