Python dataset.load_data() Examples
The following are 21
code examples of dataset.load_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dataset
, or try the search function
.
Example #1
Source File: model_eval.py From BetaElephant with MIT License | 5 votes |
def __init__(self, model_folder, checkpoint_file): sys.path.append(model_folder) from model import get_model from dataset import load_data self.dataset = load_data('validation') self.sess = tf.InteractiveSession() self.model = get_model('policy') saver = tf.train.Saver() saver.restore(self.sess, checkpoint_file)
Example #2
Source File: api.py From KOBE with MIT License | 5 votes |
def __init__(self, config, **opt): # Load config used for training and merge with testing options self.config = yaml.load(open(config, "r")) self.config = Namespace(**{**self.config, **opt}) # Load training data.pkl for src and tgt vocabs self.data = load_data(self.config) # Load trained model checkpoints device, devices_ids = misc_utils.set_cuda(self.config) self.model, _ = build_model(None, self.config, device) self.model.eval()
Example #3
Source File: train.py From MSMARCO-Question-Answering with MIT License | 5 votes |
def reload_state(checkpoint, training_state, config, args): """ Reload state when resuming training. """ model, id_to_token, id_to_char = BidafModel.from_checkpoint( config['bidaf'], checkpoint) if torch.cuda.is_available() and args.cuda: model.cuda() model.train() optimizer = get_optimizer(model, config, training_state) token_to_id = {tok: id_ for id_, tok in id_to_token.items()} char_to_id = {char: id_ for id_, char in id_to_char.items()} len_tok_voc = len(token_to_id) len_char_voc = len(char_to_id) with open(args.data) as f_o: data, _ = load_data(json.load(f_o), span_only=True, answered_only=True) limit_passage = config.get('training', {}).get('limit') data = tokenize_data(data, token_to_id, char_to_id, limit_passage) data = get_loader(data, config) assert len(token_to_id) == len_tok_voc assert len(char_to_id) == len_char_voc return model, id_to_token, id_to_char, optimizer, data
Example #4
Source File: train.py From MSMARCO with MIT License | 5 votes |
def reload_state(checkpoint, training_state, config, args): """ Reload state when resuming training. """ model, id_to_token, id_to_char = BidafModel.from_checkpoint( config['bidaf'], checkpoint) if torch.cuda.is_available() and args.cuda: model.cuda() model.train() optimizer = get_optimizer(model, config, training_state) token_to_id = {tok: id_ for id_, tok in id_to_token.items()} char_to_id = {char: id_ for id_, char in id_to_char.items()} len_tok_voc = len(token_to_id) len_char_voc = len(char_to_id) with open(args.data) as f_o: data, _ = load_data(json.load(f_o), span_only=True, answered_only=True) limit_passage = config.get('training', {}).get('limit') data = tokenize_data(data, token_to_id, char_to_id, limit_passage) data = get_loader(data, config) assert len(token_to_id) == len_tok_voc assert len(char_to_id) == len_char_voc return model, id_to_token, id_to_char, optimizer, data
Example #5
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('policy') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #6
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #7
Source File: main.py From Neural-Attentive-Session-Based-Recommendation-PyTorch with GNU General Public License v3.0 | 4 votes |
def main(): print('Loading data...') train, valid, test = load_data(args.dataset_path, valid_portion=args.valid_portion) train_data = RecSysDataset(train) valid_data = RecSysDataset(valid) test_data = RecSysDataset(test) train_loader = DataLoader(train_data, batch_size = args.batch_size, shuffle = True, collate_fn = collate_fn) valid_loader = DataLoader(valid_data, batch_size = args.batch_size, shuffle = False, collate_fn = collate_fn) test_loader = DataLoader(test_data, batch_size = args.batch_size, shuffle = False, collate_fn = collate_fn) if args.dataset_path.split('/')[-2] == 'diginetica': n_items = 43098 elif args.dataset_path.split('/')[-2] in ['yoochoose1_64', 'yoochoose1_4']: n_items = 37484 else: raise Exception('Unknown Dataset!') model = NARM(n_items, args.hidden_size, args.embed_dim, args.batch_size).to(device) if args.test: ckpt = torch.load('latest_checkpoint.pth.tar') model.load_state_dict(ckpt['state_dict']) recall, mrr = validate(test_loader, model) print("Test: Recall@{}: {:.4f}, MRR@{}: {:.4f}".format(args.topk, recall, args.topk, mrr)) return optimizer = optim.Adam(model.parameters(), args.lr) criterion = nn.CrossEntropyLoss() scheduler = StepLR(optimizer, step_size = args.lr_dc_step, gamma = args.lr_dc) for epoch in tqdm(range(args.epoch)): # train for one epoch scheduler.step(epoch = epoch) trainForEpoch(train_loader, model, optimizer, epoch, args.epoch, criterion, log_aggr = 200) recall, mrr = validate(valid_loader, model) print('Epoch {} validation: Recall@{}: {:.4f}, MRR@{}: {:.4f} \n'.format(epoch, args.topk, recall, args.topk, mrr)) # store best loss and save a model checkpoint ckpt_dict = { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() } torch.save(ckpt_dict, 'latest_checkpoint.pth.tar')
Example #8
Source File: train.py From MSMARCO-Question-Answering with MIT License | 4 votes |
def init_state(config, args): token_to_id = {'': 0} char_to_id = {'': 0} print('Loading data...') with open(args.data) as f_o: data, _ = load_data(json.load(f_o), span_only=True, answered_only=True) print('Tokenizing data...') data = tokenize_data(data, token_to_id, char_to_id) data = get_loader(data, config) id_to_token = {id_: tok for tok, id_ in token_to_id.items()} id_to_char = {id_: char for char, id_ in char_to_id.items()} print('Creating model...') model = BidafModel.from_config(config['bidaf'], id_to_token, id_to_char) if args.word_rep: print('Loading pre-trained embeddings...') with open(args.word_rep) as f_o: pre_trained = SymbolEmbSourceText( f_o, set(tok for id_, tok in id_to_token.items() if id_ != 0)) mean, cov = pre_trained.get_norm_stats(args.use_covariance) rng = np.random.RandomState(2) oovs = SymbolEmbSourceNorm(mean, cov, rng, args.use_covariance) model.embedder.embeddings[0].embeddings.weight.data = torch.from_numpy( symbol_injection( id_to_token, 0, model.embedder.embeddings[0].embeddings.weight.data.numpy(), pre_trained, oovs)) else: pass # No pretraining, just keep the random values. # Char embeddings are already random, so we don't need to update them. if torch.cuda.is_available() and args.cuda: model.cuda() model.train() optimizer = get_optimizer(model, config, state=None) return model, id_to_token, id_to_char, optimizer, data
Example #9
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #10
Source File: train.py From MSMARCO with MIT License | 4 votes |
def init_state(config, args): token_to_id = {'': 0} char_to_id = {'': 0} print('Loading data...') with open(args.data) as f_o: data, _ = load_data(json.load(f_o), span_only=True, answered_only=True) print('Tokenizing data...') data = tokenize_data(data, token_to_id, char_to_id) data = get_loader(data, config) id_to_token = {id_: tok for tok, id_ in token_to_id.items()} id_to_char = {id_: char for char, id_ in char_to_id.items()} print('Creating model...') model = BidafModel.from_config(config['bidaf'], id_to_token, id_to_char) if args.word_rep: print('Loading pre-trained embeddings...') with open(args.word_rep) as f_o: pre_trained = SymbolEmbSourceText( f_o, set(tok for id_, tok in id_to_token.items() if id_ != 0)) mean, cov = pre_trained.get_norm_stats(args.use_covariance) rng = np.random.RandomState(2) oovs = SymbolEmbSourceNorm(mean, cov, rng, args.use_covariance) model.embedder.embeddings[0].embeddings.weight.data = torch.from_numpy( symbol_injection( id_to_token, 0, model.embedder.embeddings[0].embeddings.weight.data.numpy(), pre_trained, oovs)) else: pass # No pretraining, just keep the random values. # Char embeddings are already random, so we don't need to update them. if torch.cuda.is_available() and args.cuda: model.cuda() model.train() optimizer = get_optimizer(model, config, state=None) return model, id_to_token, id_to_char, optimizer, data
Example #11
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #12
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path)
Example #13
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #14
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #15
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #16
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #17
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #18
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path)
Example #19
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #20
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #21
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)