Python pandas.compat.lmap() Examples
The following are 30
code examples of pandas.compat.lmap().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.compat
, or try the search function
.
Example #1
Source File: test_construction.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if PY3: # unicode types += text_type, for t in types: expected = Index(lmap(t, raw)) res = index.map(t) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, t) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected)
Example #2
Source File: config.py From vnpy_crypto with MIT License | 6 votes |
def is_one_of_factory(legal_values): callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x): from pandas.io.formats.printing import pprint_thing as pp if x not in legal_values: if not any(c(x) for c in callables): pp_values = pp("|".join(lmap(pp, legal_values))) msg = "Value must be one of {pp_values}" if len(callables): msg += " or a callable" raise ValueError(msg.format(pp_values=pp_values)) return inner # common type validators, for convenience # usage: register_option(... , validator = is_int)
Example #3
Source File: frame.py From Computable with MIT License | 6 votes |
def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x))
Example #4
Source File: frame.py From vnpy_crypto with MIT License | 6 votes |
def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x))
Example #5
Source File: config.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def is_one_of_factory(legal_values): callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x): from pandas.io.formats.printing import pprint_thing as pp if x not in legal_values: if not any([c(x) for c in callables]): pp_values = pp("|".join(lmap(pp, legal_values))) msg = "Value must be one of {pp_values}" if len(callables): msg += " or a callable" raise ValueError(msg.format(pp_values=pp_values)) return inner # common type validators, for convenience # usage: register_option(... , validator = is_int)
Example #6
Source File: test_construction.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if PY3: # unicode types += text_type, for t in types: expected = Index(lmap(t, raw)) res = index.map(t) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, t) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected)
Example #7
Source File: test_period.py From Computable with MIT License | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if compat.PY3: # unicode types += compat.text_type, for t in types: expected = np.array(lmap(t, raw), dtype=object) res = index.map(t) # should return an array tm.assert_isinstance(res, np.ndarray) # preserve element types self.assert_(all(isinstance(resi, t) for resi in res)) # dtype should be object self.assertEqual(res.dtype, np.dtype('object').type) # lastly, values should compare equal assert_array_equal(res, expected)
Example #8
Source File: test_frame.py From vnpy_crypto with MIT License | 6 votes |
def test_kde_colors(self): _skip_if_no_scipy_gaussian_kde() if not self.mpl_ge_1_5_0: pytest.skip("mpl is not supported") from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors)
Example #9
Source File: test_frame.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_kde_colors(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() if not self.mpl_ge_1_5_0: pytest.skip("mpl is not supported") from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors)
Example #10
Source File: frame.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x))
Example #11
Source File: frame.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x))
Example #12
Source File: test_construction.py From vnpy_crypto with MIT License | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if PY3: # unicode types += text_type, for t in types: expected = Index(lmap(t, raw)) res = index.map(t) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, t) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected)
Example #13
Source File: config.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def is_one_of_factory(legal_values): callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x): from pandas.io.formats.printing import pprint_thing as pp if x not in legal_values: if not any([c(x) for c in callables]): pp_values = pp("|".join(lmap(pp, legal_values))) msg = "Value must be one of {pp_values}" if len(callables): msg += " or a callable" raise ValueError(msg.format(pp_values=pp_values)) return inner # common type validators, for convenience # usage: register_option(... , validator = is_int)
Example #14
Source File: config.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def is_one_of_factory(legal_values): callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x): from pandas.io.formats.printing import pprint_thing as pp if x not in legal_values: if not any(c(x) for c in callables): pp_values = pp("|".join(lmap(pp, legal_values))) msg = "Value must be one of {pp_values}" if len(callables): msg += " or a callable" raise ValueError(msg.format(pp_values=pp_values)) return inner # common type validators, for convenience # usage: register_option(... , validator = is_int)
Example #15
Source File: config.py From recruit with Apache License 2.0 | 6 votes |
def is_one_of_factory(legal_values): callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x): from pandas.io.formats.printing import pprint_thing as pp if x not in legal_values: if not any(c(x) for c in callables): pp_values = pp("|".join(lmap(pp, legal_values))) msg = "Value must be one of {pp_values}" if len(callables): msg += " or a callable" raise ValueError(msg.format(pp_values=pp_values)) return inner # common type validators, for convenience # usage: register_option(... , validator = is_int)
Example #16
Source File: test_construction.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if PY3: # unicode types += text_type, for t in types: expected = Index(lmap(t, raw)) res = index.map(t) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, t) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected)
Example #17
Source File: frame.py From recruit with Apache License 2.0 | 6 votes |
def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x))
Example #18
Source File: test_construction.py From coffeegrindsize with MIT License | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if PY3: # unicode types += text_type, for t in types: expected = Index(lmap(t, raw)) res = index.map(t) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, t) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected)
Example #19
Source File: test_frame.py From recruit with Apache License 2.0 | 6 votes |
def test_kde_colors(self): _skip_if_no_scipy_gaussian_kde() from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors)
Example #20
Source File: frame.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x))
Example #21
Source File: test_frame.py From coffeegrindsize with MIT License | 6 votes |
def test_kde_colors(self): _skip_if_no_scipy_gaussian_kde() from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors)
Example #22
Source File: test_frame.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_kde_colors(self): _skip_if_no_scipy_gaussian_kde() from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors)
Example #23
Source File: test_construction.py From recruit with Apache License 2.0 | 6 votes |
def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if PY3: # unicode types += text_type, for t in types: expected = Index(lmap(t, raw)) res = index.map(t) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, t) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected)
Example #24
Source File: _misc.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def autocorrelation_plot(series, ax=None, **kwds): """Autocorrelation plot for time series. Parameters: ----------- series: Time series ax: Matplotlib axis object, optional kwds : keywords Options to pass to matplotlib plotting method Returns: ----------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt n = len(series) data = np.asarray(series) if ax is None: ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0)) mean = np.mean(data) c0 = np.sum((data - mean) ** 2) / float(n) def r(h): return ((data[:n - h] - mean) * (data[h:] - mean)).sum() / float(n) / c0 x = np.arange(n) + 1 y = lmap(r, x) z95 = 1.959963984540054 z99 = 2.5758293035489004 ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey') ax.axhline(y=z95 / np.sqrt(n), color='grey') ax.axhline(y=0.0, color='black') ax.axhline(y=-z95 / np.sqrt(n), color='grey') ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey') ax.set_xlabel("Lag") ax.set_ylabel("Autocorrelation") ax.plot(x, y, **kwds) if 'label' in kwds: ax.legend() ax.grid() return ax
Example #25
Source File: expr.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _preparse(source, f=_compose(_replace_locals, _replace_booleans, _rewrite_assign)): """Compose a collection of tokenization functions Parameters ---------- source : str A Python source code string f : callable This takes a tuple of (toknum, tokval) as its argument and returns a tuple with the same structure but possibly different elements. Defaults to the composition of ``_rewrite_assign``, ``_replace_booleans``, and ``_replace_locals``. Returns ------- s : str Valid Python source code Notes ----- The `f` parameter can be any callable that takes *and* returns input of the form ``(toknum, tokval)``, where ``toknum`` is one of the constants from the ``tokenize`` module and ``tokval`` is a string. """ assert callable(f), 'f must be callable' return tokenize.untokenize(lmap(f, tokenize_string(source)))
Example #26
Source File: expr.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _preparse(source, f=compose(_replace_locals, _replace_booleans, _rewrite_assign)): """Compose a collection of tokenization functions Parameters ---------- source : str A Python source code string f : callable This takes a tuple of (toknum, tokval) as its argument and returns a tuple with the same structure but possibly different elements. Defaults to the composition of ``_rewrite_assign``, ``_replace_booleans``, and ``_replace_locals``. Returns ------- s : str Valid Python source code Notes ----- The `f` parameter can be any callable that takes *and* returns input of the form ``(toknum, tokval)``, where ``toknum`` is one of the constants from the ``tokenize`` module and ``tokval`` is a string. """ assert callable(f), 'f must be callable' return tokenize.untokenize(lmap(f, tokenize_string(source)))
Example #27
Source File: test_to_csv.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_to_csv_from_csv3(self): with ensure_clean('__tmp_to_csv_from_csv3__') as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode='a', header=False) xp = pd.concat([df1, df2]) rs = pd.read_csv(path, index_col=0) rs.columns = lmap(int, rs.columns) xp.columns = lmap(int, xp.columns) assert_frame_equal(xp, rs)
Example #28
Source File: test_tools.py From recruit with Apache License 2.0 | 5 votes |
def test_to_datetime_types(self, cache): # empty string result = to_datetime('', cache=cache) assert result is NaT result = to_datetime(['', ''], cache=cache) assert isna(result).all() # ints result = Timestamp(0) expected = to_datetime(0, cache=cache) assert result == expected # GH 3888 (strings) expected = to_datetime(['2012'], cache=cache)[0] result = to_datetime('2012', cache=cache) assert result == expected # array = ['2012','20120101','20120101 12:01:01'] array = ['20120101', '20120101 12:01:01'] expected = list(to_datetime(array, cache=cache)) result = lmap(Timestamp, array) tm.assert_almost_equal(result, expected) # currently fails ### # result = Timestamp('2012') # expected = to_datetime('2012') # assert result == expected
Example #29
Source File: test_frame.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_hist_colors(self): default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) ax = df.plot.hist() self._check_colors(ax.patches[::10], facecolors=default_colors[:5]) tm.close() custom_colors = 'rgcby' ax = df.plot.hist(color=custom_colors) self._check_colors(ax.patches[::10], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.hist(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.hist(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.hist(color='DodgerBlue') self._check_colors([ax.patches[0]], facecolors=['DodgerBlue']) ax = df.plot(kind='hist', color='green') self._check_colors(ax.patches[::10], facecolors=['green'] * 5) tm.close()
Example #30
Source File: test_misc.py From coffeegrindsize with MIT License | 5 votes |
def test_radviz(self, iris): from pandas.plotting import radviz from matplotlib import cm df = iris _check_plot_works(radviz, frame=df, class_column='Name') rgba = ('#556270', '#4ECDC4', '#C7F464') ax = _check_plot_works( radviz, frame=df, class_column='Name', color=rgba) # skip Circle drawn as ticks patches = [p for p in ax.patches[:20] if p.get_label() != ''] self._check_colors( patches[:10], facecolors=rgba, mapping=df['Name'][:10]) cnames = ['dodgerblue', 'aquamarine', 'seagreen'] _check_plot_works(radviz, frame=df, class_column='Name', color=cnames) patches = [p for p in ax.patches[:20] if p.get_label() != ''] self._check_colors(patches, facecolors=cnames, mapping=df['Name'][:10]) _check_plot_works(radviz, frame=df, class_column='Name', colormap=cm.jet) cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique())) patches = [p for p in ax.patches[:20] if p.get_label() != ''] self._check_colors(patches, facecolors=cmaps, mapping=df['Name'][:10]) colors = [[0., 0., 1., 1.], [0., 0.5, 1., 1.], [1., 0., 0., 1.]] df = DataFrame({"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ['b', 'g', 'r']}) ax = radviz(df, 'Name', color=colors) handles, labels = ax.get_legend_handles_labels() self._check_colors(handles, facecolors=colors)