Python keras.applications.densenet.py() Examples
The following are 5
code examples of keras.applications.densenet.py().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications.densenet
, or try the search function
.
Example #1
Source File: densenet.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_ kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications /densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/'\ 'download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError( 'Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #2
Source File: densenet.py From DeepForest with MIT License | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #3
Source File: densenet.py From CameraRadarFusionNet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #4
Source File: densenet.py From keras-retinanet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #5
Source File: densenet.py From keras-m2det with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')