Python munkres.make_cost_matrix() Examples
The following are 8
code examples of munkres.make_cost_matrix().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
munkres
, or try the search function
.
Example #1
Source File: munkres.py From uois with GNU General Public License v3.0 | 6 votes |
def make_cost_matrix(profit_matrix, inversion_function): """ Create a cost matrix from a profit matrix by calling 'inversion_function' to invert each value. The inversion function must take one numeric argument (of any type) and return another numeric argument which is presumed to be the cost inverse of the original profit. This is a static method. Call it like this: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) For example: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x) :Parameters: profit_matrix : list of lists The matrix to convert from a profit to a cost matrix inversion_function : function The function to use to invert each entry in the profit matrix :rtype: list of lists :return: The converted matrix """ cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix
Example #2
Source File: munkres.py From MOTSFusion with MIT License | 5 votes |
def make_cost_matrix(profit_matrix, inversion_function): """ **DEPRECATED** Please use the module function ``make_cost_matrix()``. """ import munkres return munkres.make_cost_matrix(profit_matrix, inversion_function)
Example #3
Source File: munkres.py From MOTSFusion with MIT License | 5 votes |
def make_cost_matrix(profit_matrix, inversion_function): """ Create a cost matrix from a profit matrix by calling 'inversion_function' to invert each value. The inversion function must take one numeric argument (of any type) and return another numeric argument which is presumed to be the cost inverse of the original profit. This is a static method. Call it like this: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) For example: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxint - x) :Parameters: profit_matrix : list of lists The matrix to convert from a profit to a cost matrix inversion_function : function The function to use to invert each entry in the profit matrix :rtype: list of lists :return: The converted matrix """ cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix
Example #4
Source File: munkres.py From uois with GNU General Public License v3.0 | 5 votes |
def make_cost_matrix(profit_matrix, inversion_function): """ **DEPRECATED** Please use the module function ``make_cost_matrix()``. """ import munkres return munkres.make_cost_matrix(profit_matrix, inversion_function)
Example #5
Source File: hungarian_alignment.py From coling2018_fake-news-challenge with Apache License 2.0 | 5 votes |
def calc_hungarian_alignment_score(self, s, t): """Calculate the alignment score between the two texts s and t using the implementation of the Hungarian alignment algorithm provided in https://pypi.python.org/pypi/munkres/.""" s_toks = get_tokenized_lemmas(s) t_toks = get_tokenized_lemmas(t) #print("#### new ppdb calculation ####") #print(s_toks) #print(t_toks) df = pd.DataFrame(index=s_toks, columns=t_toks, data=0.) for c in s_toks: for a in t_toks: df.ix[c, a] = self.compute_paraphrase_score(c, a) matrix = df.values cost_matrix = make_cost_matrix(matrix, lambda cost: _max_ppdb_score - cost) indexes = _munk.compute(cost_matrix) total = 0.0 for row, column in indexes: value = matrix[row][column] total += value #print(s + ' || ' + t + ' :' + str(indexes) + ' - ' + str(total / float(np.min(matrix.shape)))) # original procedure returns indexes and score - i do not see any use for the indexes as a feature # return indexes, total / float(np.min(matrix.shape)) return total / float(np.min(matrix.shape))
Example #6
Source File: noun_iou.py From show-control-and-tell with BSD 3-Clause "New" or "Revised" License | 5 votes |
def score(self, seq_gt, seq_pred): seq_gt = self.prep_seq(seq_gt) seq_pred = self.prep_seq(seq_pred) m, n = len(seq_gt), len(seq_pred) # length of two sequences if m == 0: return 1. if n == 0: return 0. similarities = torch.zeros((m, n)) for i in range(m): for j in range(n): a = self.vectors[seq_gt[i]] b = self.vectors[seq_pred[j]] a = torch.from_numpy(a) b = torch.from_numpy(b) similarities[i, j] = torch.mean(F.cosine_similarity(a.unsqueeze(0), b.unsqueeze(0))).unsqueeze(-1) similarities = (similarities + 1) / 2 similarities = similarities.numpy() ass = self.munkres.compute(munkres.make_cost_matrix(similarities)) intersection_score = .0 for a in ass: intersection_score += similarities[a] iou_score = intersection_score / (m + n - intersection_score) return iou_score
Example #7
Source File: munkres.py From SARosPerceptionKitti with MIT License | 5 votes |
def make_cost_matrix(profit_matrix, inversion_function): """ **DEPRECATED** Please use the module function ``make_cost_matrix()``. """ import munkres return munkres.make_cost_matrix(profit_matrix, inversion_function)
Example #8
Source File: munkres.py From SARosPerceptionKitti with MIT License | 5 votes |
def make_cost_matrix(profit_matrix, inversion_function): """ Create a cost matrix from a profit matrix by calling 'inversion_function' to invert each value. The inversion function must take one numeric argument (of any type) and return another numeric argument which is presumed to be the cost inverse of the original profit. This is a static method. Call it like this: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) For example: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxint - x) :Parameters: profit_matrix : list of lists The matrix to convert from a profit to a cost matrix inversion_function : function The function to use to invert each entry in the profit matrix :rtype: list of lists :return: The converted matrix """ cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix